

<mark>Ultrasound Im</mark>aging: Basic Physics

James A. Zagzebski, Ph.D. Depts. of Medical Physics, Radiology, and Human Oncology

Physics Honor's Lectures November 3, 2006

×	Speed of Sound			
	Material	Speed of sound (m/s)		
	Air	330 (1/5 mile)		
	Fat	1460		
Y.	Water (22°C)	1480		
	Liver	1555		
	Blood	1560		
	Muscle	1600		
×	Skull bone	4080		

×	Acoustic Impedance				
	Tissue	Impedance (Rayls)			
	Air	0.004 x 10 ⁶			
	Fat	1.34 x 10 ⁶			
Y.	Water	1.48 x 10 ⁶			
	Liver	1.65 x 10 ⁶			
	Blood	1.65 x 10 ⁶			
V .	Muscle	1.71 x 10 ⁶			
	Skull bon	e 7.8 x 10 ⁶			
	Note, the range of impedances of soft tissues (that do not contain air) is relatively narrow.				

The Attenuation Coefficient
(Amount of attenuation per unit distance)
$$MB = 10 \log_{10} \frac{I_2}{I_1}$$
 $B = 10 \log_{10} \frac{I_2}{I_1}$

- Modern imaging requires display of echo signals whose amplitudes vary by 60-90 decibels.
- 40 dB: 100/1 ratio of amplitudes
- 60 dB: 1,000/1 ratio
- = 80 dB: 10,000/1 ratio

×	What's new? Contrast agents			
***	Agent Optison Definity Imagent Sonovue Sonazoid AI-700	Mean Diameter 4 (microns) 2-6 5 2.5 2-4? 2-4?	Shell/Gas Composition Albumin/perfluorocarbon Liposome/perfluorocarbon Surfactant membrane/perfluorohexane Phospholipid/sulfer hexafluoride Polymer/sulfer hexafluoride Ploymer	

Parametric Imaging of Scatterer Size

- Acquire RF data from sample;
- Use a "reference phantom" to determine backscatter coefficient, $BSC(\omega)$ of sample (5 mm segments)
- Find scatterer size (correlation model) that yields closest fit of BSC(ω) frequency dependence.

$$\hat{a} = \arg \min \frac{1}{n} \sum_{\omega_{\min}}^{\infty} \left[\psi(\omega, \hat{a}) - \overline{\psi}(\hat{a}) \right]^2$$

$$\psi(\omega, \hat{a}) = \log(BSC_s(\omega)) - \log(BSC_s(\omega, \hat{a}))$$

