Physics 207 - Lecture 2

Order of Magnitude Calculations / Estimates

Questions: What is the earth's radius in meters?

- Need to know something from your experience:
* Flying from NYC to SF one accumulates ~ 3,000 miles
* NYC to SF spans about $1 / 8$ of the Earth's circumference
* So, the Earth's circumference $L=3,000 \times 8 \sim 24,000 \mathrm{mi}$
* Since circumference of a circle is: $L=2 \pi r$
* Estimate of Earth radius :
$r=\frac{L}{2 \pi} \approx \frac{24,000 \mathrm{mi}}{6} \approx 4,000 \mathrm{mi}$
$4 \times 10^{3} \mathrm{mi}=4 \times 10^{3} \mathrm{mi} \times 1.6 \mathrm{~km} / \mathrm{mi} \times 10 \mathrm{~m} / \mathrm{km} \sim 6.4 \times 10^{3} \mathrm{~km}=6 \times 10^{6} \mathrm{~m}$

Physics 207: Lecture 2. Pg 3

Physics 207 - Lecture 2

Lecture 2, Exercise 1 Dimensional Analysis

The force (F) to keep an object moving in a circle can be described in terms of:

* velocity (v, dimension L/T) of the object
\star mass (m, dimension M)
\star radius of the circle (R, dimension L).
Which of the following formulas for F could be correct ?
(a) $F=m v R$
(b) $F=m\left(\frac{v}{R}\right)^{2}$
(c) $\quad F=\frac{m v^{2}}{R}$

Note: Force has dimensions of $M L / T^{2}$

Physics 207: Lecture 2, Pg 10

- Useful Conversion factors:

$\neq 1 \mathrm{inch}$	$=2.54 \mathrm{~cm}$
$\div 1 \mathrm{~m}$	$=3.28 \mathrm{ft}$
$\div 1$ mile	$=5280 \mathrm{ft}$
$\div 1$ mile	$=1.61 \mathrm{~km}$

- Example: Convert miles per hour to meters per second:

Lecture 2, Exercise 2

 Converting between different systems of units- When on travel in Europe you rent a small car which consumes 6 liters of gasoline per 100 km . What is the MPG of the car?
(There are 3.8 liters per gallon.)
$\frac{100}{6} \frac{\mathrm{~km}}{l}=\frac{100 \mathrm{~km}}{6 \mathrm{l}} \times \frac{\mathrm{mi}}{1.6 \mathrm{~km}} \times \frac{3.8 l}{\mathrm{gal}}=39.6 \frac{\mathrm{mi}}{\mathrm{gal}}=40 \frac{\mathrm{mi}}{\mathrm{gal}}$

Physics 207 - Lecture 2

See text: 1-7
Significant Figures - When multiplying or dividing, the answer should have the same number of significant figures as the least accurate of the quantities in the calculation. - When adding or subtracting, the number of digits to the right of the decimal point should equal that of the term in the sum or difference that has the smallest number of digits to the right of the decimal point. - Examples: $\begin{aligned} & * 2 \times 3.1=6 \\ & * 4.0 \times 10^{1} / 2.04 \times 10^{2}=1.6 \times 10^{-1} \\ & * 2.4-0.0023=2.4 \end{aligned}$ End of Chapter 1
Physics 207: Lecture 2, Pg 14

Position / Displacement

- Displacement is just change in position.
$\star \Delta X=x_{f}-x_{i}$

Physics 207: Lecture 2. Pg 16

Recap

- If the position x is known as a function of time, then we can find both velocity v
$x=x(t)$
$v=\frac{d x}{d t}$
$x=\int_{t_{0}}^{t_{1}} d t v(t)$

Physics 207 - Lecture 2

