Physics 207 - Lecture 3

Physics 207, Lecture 3, Sept. 13
Agenda

- Chapter 2, Chapter 3.1, 3.2
* Velocity, Speed (Instantaneous and Average)
* Acceleration (Instantaneous and Average)
* One-Dimensional Motion with Constant Acceleration
* Free-fall and Motion on an Incline
* Coordinate systems

Assignment: Finish reading Ch. 3, begin Chapter 4 (4.1 and 4.2)

- WebAssign Problem Set 1 due Tuesday next week (start now)

Speed and Velocity

Changes in position vs Changes in time

- Average velocity = Net distance covered (displacement) per total time
$\bar{v}($ average velocity $)=\frac{\Delta x(\text { total displacement })}{\Delta t(\text { total time })}$
- Speed is just the magnitude of velocity (aka a scalar).
* Total distance ("path") traveled per total time spent.

Active Figure 1 http://www.phy.ntnu.edu.tw/ntnujava/main.php?t=282

- Instantaneous velocity, velocity at a given instant
- Slope of the position curve
$v($ velocity $)=\lim _{\Delta t \rightarrow 0} \frac{\Delta x(\text { displacement })}{\Delta t(\text { time })}=\frac{d x}{d t}$

$$
\text { Active Figure } 2 \quad \mathrm{http}: / / w w w . p h y . n t n u . e d u . t w / n t n u j a v a / m a i n . p h p ? t=230
$$

What is the average speed over the first 4 seconds?
A) $1.0 \mathrm{~m} / \mathrm{s}$
B) $1.5 \mathrm{~m} / \mathrm{s}$
C) $2.0 \mathrm{~m} / \mathrm{s}$
D) not enough information to decide.

Physics 207: Lecture 3, Pg 4

Physics 207 - Lecture 3

Acceleration

Changes in velocity vs Changes in time

- Average acceleration $=$ Net change in velocity $\left(v_{\text {final }}-v_{\text {initial }}\right)$ per total time
$\bar{a}($ average acceleration $)=\frac{\Delta v(\text { change in velocity })}{\Delta t(\text { total time })}$
Active Figure 1 http://www.phy.ntnu.edu.tw/ntnujava/main.php?t=282
- Instantaneous acceleration, acceleration at a given instant
- Slope of the velocity curve $a($ accel.$)=\lim _{\Delta t \rightarrow 0} \frac{\Delta v(\text { net change in } v)}{\Delta t(\text { time })}=\frac{d v}{d t}$

Active Figure $2 \mathrm{http}: / / w w w . p h y . n t n u . e d u . t w / n t n u j a v a / m a i n . p h p ? t=230$

Rearranging terms gives two other relationships

- For constant acceleration:

$$
\begin{aligned}
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& v=v_{0}+a t \\
& a=\text { const }
\end{aligned}
$$

- From which we can show (caveat: constant acceleration):

$$
\begin{array}{|l|}
\mathrm{v}^{2}-\mathrm{v}_{0}^{2}=2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{0}\right) \\
\overline{\mathrm{v}}_{\mathrm{avg}}=\frac{1}{2}\left(\mathrm{v}_{0}+\mathrm{v}\right) \\
\hline
\end{array}
$$

Lecture 3, Exercise 5 Motion in One Dimension

- When throwing a ball straight up, which of the following is true about its velocity v and its acceleration a at the highest point in its path?
A) Both $v=0$ and $a=0$.
B) $v \neq 0$, but $a=0$.
C) $v=0$, but $a \neq 0$.

Physics 207 - Lecture 3

Free Fall

- When any object is let go it falls toward the ground !! The force that causes the objects to fall is called gravity.
- This acceleration caused by gravity is typically written as "little" \boldsymbol{g}
- Any object, be it a baseball or an elephant, experiences the same acceleration (\boldsymbol{g}) when it is dropped, thrown, spit, or hurled, i.e. \boldsymbol{g} is a constant.

Context Rich Problem: (Exercise 6)

- On a bright sunny day you are walking around the campus watching one of the many construction sites. To lift a bunch of bricks from a central area, they have brought in a helicopter. As the pilot is leaving, she accidentally releases the bricks when they are 1000 m above the ground. The worker below is getting ready to walk away in 10 seconds. (Let $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

Does the worker live?
(Criteria for living.....they move before the brick strike the ground)

Problem Solution Method:

Five Steps:

1) Focus the Problem

- draw a picture - what are we asking for?

2) Describe the physics
what physics ideas are applicable
what are the relevant variables known and unknown
3) Plan the solution
what are the relevant physics equations
4) Execute the plan

- solve in terms of variables
solve in terms of numbers

5) Evaluate the answer
are the dimensions and units correct?
do the numbers make sense?
Physics 207: Lecture $3, \operatorname{Pg} 16$

