Physics 207 - Lecture 4

Chapter 2 recap: Two "perspectives" to motion in one-dimension
Starting with $x(t)$

Starting with a, v_{0} and x_{0}
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$

$$
v=v_{0}+a t
$$

$a=$ const

Rearranging terms gives two other relationships

- For constant acceleration:

- From which we can show (caveat: constant acceleration):

$$
\begin{array}{|l|}
\mathrm{v}^{2}-\mathrm{v}_{0}^{2}=2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{0}\right) \\
\overline{\mathrm{V}}_{\text {avg }}=\frac{1}{2}\left(\mathrm{v}_{0}+\mathrm{v}\right)
\end{array}
$$

See text: 3-1

Coordinate Systems / Chapter 3

- In 1 dimension, only 1 kind of system,
* Linear Coordinates (x) +/-
- In 2 dimensions there are two commonly used systems,
* Cartesian Coordinates (x, y)
* Polar Coordinates $\quad(r, \theta)$
- In 3 dimensions there are three commonly used systems,
* Cartesian Coordinates
* Cylindrical Coordinates
* Spherical Coordinates
(x, y, z)
(r, θ, z)
(r, θ, ϕ)

See text: 3-2

Vectors

- In 1 dimension, we can specify direction with a + or - sign.
- In 2 or 3 dimensions, we need more than a sign to specify the direction of something:
- To illustrate this, consider the position vector r in 2 dimensions.
Example: Where is Boston?
* Choose origin at New York
* Choose coordinate system

Boston is 212 miles northeast of
New York [in (r, θ)] OR
Boston is 150 miles north and 150 miles east of New York [in (x, y)]

Physics 207 - Lecture 4

Vectors have rigorous definitions

- A vector is composed of a magnitude and a direction * Examples: displacement, velocity, acceleration
* Magnitude of \mathbf{A} is designated $|\mathbf{A}|$
* Usually vectors include units ($\mathrm{m}, \mathrm{m} / \mathrm{s}, \mathrm{m} / \mathrm{s}^{2}$)
- A vector has no particular position
(Note: the position vector reflects displacement from the origin)
- Two vectors are equal if their directions, magnitudes and units match.

$$
\begin{gathered}
\mathbf{A}=\mathbf{C} \\
\mathbf{A} \neq \mathbf{B}, \mathbf{B} \neq \mathbf{C}
\end{gathered}
$$

Comparing Vectors and Scalars

- A scalar is an ordinary number.
* A magnitude without a direction
* May have units (kg) or be just a number
* Usually indicated by a regular letter, no bold face and no arrow on top.
Note: the lack of specific designation of a scalar can lead to confusion
- The product of a vector and a scalar is another vector in the same "direction" but with modified magnitude.

$$
\mathbf{A}=-0.75 \mathbf{B}
$$

Physics 207: Lecture 4. Pg 9

Vector addition

- The sum of two vectors is another vector.

Physics 207 - Lecture 4

Lecture 4, Example 4
 Vector addition

An experimental aircraft can fly at full throttle in still air at $200 \mathrm{~m} / \mathrm{s}$. The pilot has the nose of the plane pointed west (at full throttle) but, unknown to the pilot, the plane is actually flying through a strong wind blowing from the northwest at $140 \mathrm{~m} / \mathrm{s}$. Just then the engine fails and the plane starts to fall at $5 \mathrm{~m} / \mathrm{s}^{2}$.
What is the magnitude and directions of the resulting velocity (relative to the ground) the instant the engine fails?

Multiplication of vectors

- There are two common ways to multiply vectors
* "Scalar or dot product": Result is a scalar
※"Vector or cross product": Result is a vector (not now...)

$$
|\mathbf{A} \times \mathbf{B}|=|\mathbf{A}||\mathbf{B}| \sin (\theta)
$$

Physics 207: Lecture 4, Pg 15

Scalar product

- Useful for performing projections.

$$
A \cdot \hat{\imath}=A_{x}
$$

- Calculation is simple in terms of components.

$$
\mathbf{A} \cdot \mathbf{B}=\left(\mathrm{A}_{\mathrm{x}}\right)\left(\mathrm{B}_{\mathrm{x}}\right)+\left(\mathrm{A}_{\mathrm{y}}\right)\left(\mathrm{B}_{\mathrm{y}}\right)
$$

$$
\bigsqcup^{\theta}
$$

Calculation is easy in terms of magnitudes and relative angles.

$$
\mathbf{A} \times \mathbf{B} \neq 0 \quad \mathbf{A} \times \mathbf{B}=0
$$

$$
\mathbf{A} \bullet \mathbf{B}=|A||B| \cos \theta
$$

Physics 207:Lecture 4 Pg 16

$$
\begin{aligned}
& \mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos (\theta) \\
& \mathbf{A}^{\circ} \cdot \mathbf{B}=0 \quad \mathbf{A} \cdot \mathbf{B} \neq 0
\end{aligned}
$$

Physics 207 - Lecture 4

See text: 4-2 and 4-3

3-D Kinematics

- For 3-D, we simply apply the 1-D equations to each of the component equations.

x	$=x(t)$	y	$=y(t)$
v_{x}	$=\frac{d x}{d t}$	v_{y}	$=\frac{d y}{d t}$
a_{x}	$=\frac{d^{2} x}{d t^{2}}$	a_{y}	$=\frac{d^{2} y}{d t^{2}}$

- Which can be combined into the vector equations:

$$
\boldsymbol{r}=\boldsymbol{r}(t) \quad \boldsymbol{v}=d \boldsymbol{r} / d t \quad \boldsymbol{a}=d^{2} \boldsymbol{r} / d t^{2}
$$

This compact notation hides the actual complexity

Physics 207: Lecture 4, Pg 19

Thinking about motion in 2 Dimensions

- The position of an object is described by its position vector, \mathbf{r}
- The displacement of the object is defined as the change in its the change in its
position (final -initial)
$* \Delta \mathbf{r}=\mathbf{r}_{\mathrm{f}}-\mathbf{r}_{\mathrm{i}}$

Instantaneous Velocity

- The instantaneous velocity is the limit of the average velocity as Δt approaches zero
- The direction of the instantaneous velocity is along a line that is tangent to the path of the particle's direction of motion.
$\mathbf{v} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}=\frac{d \mathbf{r}}{d t}$
- The magnitude of the instantaneous velocity vector is the speed. (The speed is a scalar quantity)

Physics 207: Lecture 4, Pg 21

Instantaneous Acceleration

- The instantaneous acceleration is the limit of the average acceleration as $\Delta \mathbf{v} / \Delta t$ approaches zero

$$
\mathbf{a} \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{v}}{\Delta t}=\frac{d \mathbf{v}}{d t}
$$

- The instantaneous acceleration is a vector with components parallel (tangential) and/or perpendicular (radial) to the tangent of the path (see Chapter 5)

Physics 207 - Lecture 4

Page 5

