Physics 207 - Lecture 6

| \quad Physics 207, Lecture 6, Sept. 25 |
| :--- | :--- |
| Agenda: |
| • Chapter 4 |
| \& Frames of reference |
| Chapter 5 |
| \& Newton's Law |
| \& Mass |
| \& Forces (contact and non-contact) |
| \& Friction (a external force that opposes motion) |
| Assignment: For Wednesday read Chapter 6 |
| - WebAssign Problem Set 2 due Wednesday noon |
| - WebAssign Problem Set 3 available today |
| - MidTerm Thursday, Oct. 5, Chapters 1-6, 90 minutes, 7-8:45 PM |

Physics 207: Lecture 6, Pg 1

Relative Velocity

- Two observers moving relative to each other generally do not agree on the outcome of an experiment (path)
- For example, observers A and B below see different paths for the ball

Relative Velocity, r, v, a and r', $\mathbf{v}^{\prime}, \mathbf{a}^{\prime}$

- The positions as seen from the two reference frames are related through the velocity
(remember S is moving at a constant $-\mathrm{v}_{0}$ relative to S^{\prime})
* $\mathbf{r}^{\prime}=\mathbf{r}-\mathbf{v}_{0} t$
- The derivative of the position equation will give the velocity equation
* $\mathbf{v}^{\prime}=\mathbf{v}-\mathbf{v}_{\mathrm{o}}=d\left(\mathbf{r}-\mathbf{v}_{\mathrm{o}} t\right) / d t$

Acceleration in Different Frames of Reference

- The derivative of the velocity equation will give the acceleration equation

$$
\begin{aligned}
& 夫 \mathbf{v}^{\prime}=\mathbf{v}-\mathbf{v}_{0} \\
& 夫 \mathbf{a}^{\prime}=\mathbf{a}
\end{aligned}
$$

- The acceleration of the particle measured by an observer in one frame of reference is the same as that measured by any other observer moving at a constant velocity relative to the first frame.

Relative motion and frames of reference

- Reference frame S is stationary
- Reference frame S is moving at \mathbf{v}_{0}

This also means that S moves at $-\mathbf{v}_{0}$ relative to S^{\prime}

- Define time $t=0$ as that time when the origins coincide

Physics 207: Lecture 6 . Pg 2

See text: 5-1

Force

- We have a general notion of forces is from everyday life.
- In physics the definition must be precise.
*A force is an action which causes a body to accelerate.
(Newton's Second Law)

Examples:

Contact Forces
(physical contact
between objects)
Kicking a ball
Field Forces (Non-Contact) (action at a distance)

Moon and Earth

- On a microscopic level, all forces are non-contact

See text: 5-3

Mass

- We have an idea of what mass is from everyday life.
- In physics:
*mass (in Phys 207) is a quantity that specifies how much inertia an object has
(i.e. a scalar that relates force to acceleration)
(Newton's First Law)
- Mass is an inherent property of an object.
- Mass and weight are different quantities; weight is usually the magnitude of a gravitational (non-contact) force.
"Pound" (lb) is a definition of weight (i.e., a force), not a mass!

Physics 207: Lecture 6, Pg 9

See text: 5-2

Newton's First Law and IRFs

An object subject to no external forces moves with a constant velocity if viewed from an inertial reference frame (IRF).

If no net force acting on an object, there is no acceleration.

- The above statement can be used to define inertial reference frames.
* An IRF is a reference frame that is not accelerating (or rotating) with respect to the "fixed stars".
* If one IRF exists, infinitely many exist since they are related by any arbitrary constant velocity vector!
* The surface of the Earth may be viewed as an IRF

Lecture 6, Exercise 2 Newton's Second Law

A force of 2 Newtons acts on a cart that is initially at rest on an air table with no air and pushed for 1 second. Because there is no air, the cart stops immediately after I finish pushing. It has traveled a distance, D.

Next, the force of 2 Newtons acts again but is applied for 2 seconds.
The new distance the cart moves relative to D is:
(A) $8 \times$ as far
(B) $4 x$ as far
(C) $2 x$ as far
(D) $1 / 4$ as far

Physics 207: Lecture 6, Pg 16

Page 3

Physics 207 - Lecture 6

Lecture 6, Exercise 4 Newton's Third Law

Same scenario but now we examine the accelerations

The magnitude of the acceleration, due to this collision, of the bus
(A) greater than
(B) the same as
(C) less than
that of the fly.
Physics 207: Lecture 6, Pg 21

Physics 207 - Lecture 6

Lecture 6, Exercise 5 Newton's 3rd Law

- Two blocks are being pushed by a finger on a horizontal frictionless floor. How many action-reaction force pairs are present in this exercise?

(A) 2
(B) 4
(C) 6

Certain forces act to keep an object in place.
These have what ever force needed to balance all others (until a breaking point).

Physics 207 - Lecture 6

See text: Example 5.7

Exercise: Frictionless inclined plane

- A block of mass m slides down a frictionless ramp that makes angle θ with respect to horizontal. What is its acceleration a ?

Physics 207: Lecture 6, Pg 33

See text: Example 5.7
Frictionless inclined plane...

- Use a FBD and consider x and y components separately:
- F_{x} i: $m a_{x}=m g \sin \theta$ $\Rightarrow a_{x}=g \sin \theta$
- $\mathrm{F}_{\mathrm{y}} j: m a_{y}=0=N-m g \cos \theta \Rightarrow N=m g \cos \theta$

Physics 207 - Lecture 6

Physics 207 - Lecture 6

Recapping
Sept. 25
- Chapter 4
* Frames of reference
- Chapter 5
* Newton's Law
* Mass
* Inertia
* Forces (contact and non-contact)
* Friction (a external force that opposes motion)
* Free Body Diagrams (a very important tool)
Assignment: For Wednesday read Chapter 6
- WebAssign Problem Set 2 due Wednesday noon
- WebAssign Problem Set 3 available today
- MidTerm Thursday, Oct. 5, Chapters 1-6, 90 minutes, 7-8:45 PM

