Physics 207 - Lecture 8

Physics 207 - Lecture 8

Lecture 8, Exercise 2

 Non uniform Circular MotionWe construct a roller coaster designed so that when one rider alone becomes weightless at the top and has a speed v_{1}.
Now two additional passenger get in so that the total weight of the car (at rest) and people doubles. How fast must the car go so we are still weightless at the top ? Normal force is zero.

$$
F_{c}=-2 m a=-2 m v^{2} / r=-2 m g
$$

(A) $1 / 2 \mathrm{v}_{1}$
(B) v_{1}
(C) $2 \mathrm{v}_{1}$
(D) $4 \mathrm{v}_{1}$

Physics 207:Lecture 8. Pa 9
See text: 6-3

Accelerated Reference Frames:

 The Accelerometer- Your first job is with Ford. You are working on a project to design an accelerometer. The inner workings of this gadget consist of a weight of mass m that is hung inside a box that is attached to the ceiling of a car. You design the device with a very light string so that you can mathematically ignore it. The idea is that the angle the string makes with the vertical, θ, is determined by the car's acceleration. Your preliminary task is to think about calibration of the accelerometer when the car travels on a flat road.

$$
\text { (B) } v=(g r)^{1 / 2}=v_{1}
$$

What is the car's acceleration a when the hanging mass makes an angle θ with the vertical?

See examole 6-9: Train Car
Physics 207: Lecture 8, Pg 10

Physics 207: Lecture 8, Pg 11

Physics 207 - Lecture 8

Lecture 8, Exercise 3

 Accelerated Reference FramesYou are a passenger in a car and not wearing your seatbelt. Without increasing or decreasing speed, the car makes a sharp left turn, and you find yourself colliding with the right-hand door. Which is a correct description of the situation?
(A) Before and after the collision there is a rightward force pushing you into the door.
(B) Starting at the time of the collision, the door exerts a leftward force on you.
(C) Both of the above.
(D) Neither of the above.

Lecture 7, Exercise 3 Accelerated Reference Frames

Newton's first law says that you will continue to travel with a constant velocity as long as there are no forces acting on you. This is also known as inertia.
As you try to continue to travel straight, you collide with the car door which is starting to accelerate leftward. This contact force forces your body to accelerate and turn with the car.
(B) Starting at the time of the collision, the door exerts a leftward force on you.

Active Figure
Physics 207: Lecture 8. 2 . 14

Aristotle's Laws of Motion

- Aristotle was the first to think quantitatively about the speeds involved in these movements. He made two quantitative assertions about how things fall (natural motion):

1. Heavier things fall faster, the speed being proportional to the weight.
2. The final speed during the fall of a given object depends inversely on the density of the medium it is falling through, so, for example, the same body will fall twice as fast through a medium of half the density.
Asserted that the natural state of an object was at rest.
These observations were based on casual observations but never rigorously tested.

- In most biological systems (at the microscopic level) drag, viscous forces and Browning motion dominate. Newtonian mechanics, as described so far, will have little impact. Inertia is often irrelevant.
Physics 207: Lecture 8, Pg 15
Physics 207: Lecture 8, Pg 16

Drag Force Quantified

- With a cross sectional area, A (in m^{2}), coefficient of drag of 1.0 (most objects), sea-level density of air, and velocity, $v(\mathrm{~m} / \mathrm{s})$, the drag force is:

D $=(1 / 2) C \rho A v^{2}$ in Newtons
When D equals mg then at terminal velocity

- Example: Bicycling at $10 \mathrm{~m} / \mathrm{s}$ (22 m.p.h.), with projected area of $0.5 \mathrm{~m}^{2}$ exerts ~ 30 Newtons
* Requires $(F v)$ of power $\rightarrow 300$ Watts to maintain speed
* Minimizing drag is often important

Physics 207 - Lecture 8

Trajectories with Air Resistance

- Baseball launched at 45° with $v=50 \mathrm{~m} / \mathrm{s}$:
*Without air resistance, reaches about 63 m high, 254 m range
*With air resistance, about 31 m high, 122 m range

Vacuum trajectory $v s$. air trajectory for 45° launch angle.

Problem solving...

Physics 207: Lecture 8, Pg 22

Lecture 8, Exercise 4

- You are going to pull two blocks ($\mathrm{m}_{\mathrm{A}}=4 \mathrm{~kg}$ and $\mathrm{m}_{\mathrm{B}}=6 \mathrm{~kg}$) at constant acceleration ($\mathrm{a}=2.5 \mathrm{~m} / \mathrm{s}^{2}$) on a horizontal frictionless floor, as shown below. The rope connecting the two blocks can stand The rope connecting the two blocks can stand
tension of only 9.0 N . Would the rope break?
- (A) YES
(B) CAN'T TELL
(C) NO

Physics 207 - Lecture 8

Page 5

