Physics 207 - Lecture 9

| Agenda:
 - Problem Solving and Review for MidTerm I
 Assignments:
 - For Monday Oct. 9, Read Chapter 7 (Energy and Energy Transfer)
 - WebAssign Problem Set 4 due Oct. 18, Tuesday 11:59 PM
 Remember
 - MidTerm Thurs., Oct. 5, Chapters 1-6, 90 minutes, 7:15-8:45 PM
 - NOTE: Assigned Rooms are 105 and 113 Psychology
 - McBurney Students: Room 5310 Chamberlin |
| :--- | :--- |

- For Monday Oct 9 Read Chapter 7 (Energy and Energy Transfe)

Remember

- MidTerm Thurs., Oct. 5, Chapters 1-6, 90 minutes, 7:15-8:45 PM

Assigned Rooms are 105 and 113 Psychology

Physics 207: Lecture 9, Pg 1

Example with pulley

- A mass M is held in place by a force F. Find the tension in each segment of the rope and the magnitude of F.
* Assume the pulleys are massless and frictionless.
* Assume the rope is massless.
- The action of a massless frictionless pulley is to change the direction of a tension.
- Here $F=T_{1}=T_{2}=T_{3}$
- Equilibrium means $\Sigma F=0$ for $x, y \& z$
- For example: y-dir ma $=0=T_{2}+T_{3}-T_{5}$ and $\mathrm{ma}=0=T_{5}-M g$
- So $T_{5}=M g=T_{2}+T_{3}=2 F \rightarrow T=M g / 2$

Lecture 9, Exercise 1

- You are going to pull two blocks ($\mathrm{m}_{\mathrm{A}}=4 \mathrm{~kg}$ and $\mathrm{m}_{\mathrm{B}}=6 \mathrm{~kg}$) at constant acceleration ($\mathrm{a}=2.5 \mathrm{~m} / \mathrm{s}^{2}$) on a horizontal frictionless floor, as shown below. The rope connecting the two blocks can stand The rope connecting the two blocks can stand
tension of only 9.0 N . Would the rope break?
- (A) YES
(B) CAN'T TELL
(C) NO

Lecture 9, Exercise 1

- You are going to pull two blocks ($m_{A}=4 \mathrm{~kg}$ and $m_{B}=6$ kg) at constant acceleration ($\mathrm{a}=2.5 \mathrm{~m} / \mathrm{s}^{2}$) on a horizontal frictionless floor, as shown below. The rope connecting the two blocks can stand tension of only 9.0 N . Would the rope break ?

1. FBD for A
2. Newton's $2^{\text {nd }}$ Law x-dir: $\mathrm{ma}=\mathrm{F}=4 \mathrm{~kg} \times 2.5 \mathrm{~m} / \mathrm{s}^{2}=10 \mathrm{~N}$
(A) YES
(B) CAN'T TELL
(C) NO

Example

Problem 5.40 from Serway

Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of $\mu_{\mathrm{K}}=0.40$, the masses are $\mathrm{m}_{1}=4.0 \mathrm{~kg}, \mathrm{~m}_{2}=1.0 \mathrm{~kg}$ and $\mathrm{m}_{3}=2.0 \mathrm{~kg}$.

(A) What is the magnitude and direction of acceleration on the three blocks?
(B) What is the tension on the two cords ?

Physics 207: Lecture 9, Pg 6

Physics 207 - Lecture 9

Problem 5.40 from the book

Three blocks are connected on the table as shown. The table has a coefficient of kinetic friction of $\mu_{\mathrm{K}}=0.40$, the masses are $\mathrm{m}_{1}=4.0 \mathrm{~kg}, \mathrm{~m}_{2}=1.0 \mathrm{~kg}$ and $\mathrm{m}_{3}=2.0 \mathrm{~kg}$.

(A) FBD (except for friction)
(B) So what about friction?

Problem 5.40 recast as 1D motion

Three blocks are connected on the table as shown. The center table has a coefficient of kinetic friction of $\mu_{\mathrm{K}}=0.40$, the masses are $\mathrm{m}_{1}=4.0 \mathrm{~kg}, \mathrm{~m}_{2}=1.0 \mathrm{~kg}$ and $\mathrm{m}_{3}=2.0 \mathrm{~kg}$.

$m_{1} g>m_{3} g$ and $m_{1} g>\left(\mu_{k} m_{2} g+m_{3} g\right)$
and friction opposes motion (starting with $v=0$)
so f_{f} is to the right and a is to the left (negative)
Physics 207: Lecture 9, Pg 8

Problem 5.40 recast as 1D motion

Three blocks are connected on the table as shown. The center table has a coefficient of kinetic friction of $\mu_{\mathrm{K}}=0.40$, the masses are $\mathrm{m}_{1}=4.0 \mathrm{~kg}, \mathrm{~m}_{2}=1.0 \mathrm{~kg}$ and $m_{3}=2.0 \mathrm{~kg}$.

x-dir: 1. $\quad \Sigma F_{x}=m_{2} a=\mu_{k} m_{2} g-T_{1}+T_{3}$

$$
m_{3} a=m_{3} g-T_{3}
$$

$m_{1} a=-m_{1} g+T_{1}$
Add all three: $\left(m_{1}+m_{2}+m_{3}\right) a=\mu_{k} m_{2} g+m_{3} g-m_{1} g$

Forces at different angles

Case1: Downward angled force with friction
Case 2: Upwards angled force with friction
Cases 3,4: Up against the wall
Questions: Does it slide?
What happens to the normal force?
What happens to the frictional force?
Cases 3, 4

Forces at different angles

1. Identify forces pairs
2. Make a Force Body Diagram
3. Choose directions for x, y and z axes
4. Write down Newton's $2^{\text {nd }}$ Law for the x, y and z directions
5. If no acceleration sum of the forces is zero, ma otherwise

"Normal" Forces and Frictional Forces
6. At first the velocity is v up along the slide
"Normal" means perpendicular
7. Can we draw a velocity time plot?
8. What the acceleration versus time

Friction Force $=$ Normal Force \times (coefficient of friction)
$F_{\text {friction }}=\mu F_{\text {normal }}=\mu \mathrm{mg} \sin \theta$
Physics 207: Lecture 9, Pg 12

