Physics 207 - Lecture 10

Physics 207, Lecture 10, Oct. 9

- MidTerm I
- Exams will be returned in your next discussion section
- Regrades: Write down, on a separate sheet, what you want regraded and why.
Mean: 64.6
Median: 67
Std. Dev.: 19.0
Range: High 100 Low 5
Solution posted on
http://my.wisc.edu
Nominal curve (conservative):
86-100 A
$70-85$ B or A / B
40-69 C or \mathbf{B} /
35-40 marginal
Below 25

Physics 207, Lecture 10, Oct. 9

Agenda: Chapter 7, Work and Energy Transfer

- Definition of Work (a scalar quantity)
- Variable force devices (e.g., Hooke's Law spring)
- Work/Energy Theorem

$$
\star \mathrm{W}=\Delta \mathrm{K}
$$

- Kinetic Energy
* $K=1 / 2 m v^{2}$
- Power (on Wednesday)
* $P=d W / d t=\boldsymbol{F} \cdot \boldsymbol{v}$

Assignment: For Wednesday read Chapter 8

- WebAssign Problem Set 4 due Tuesday next week (start now)

Physics 207: Lecture 10 Pa 2

Work \& Energy

- One of the most important concepts in physics. * Alternative approach to mechanics.
- Many applications beyond mechanics.
* Thermodynamics (movement of heat or particles).
* Quantum mechanics...
- Very useful tools.
* You will learn a complementary approach (often much easier) way to solve problems. But there is no free lunch....easier but there are fewer details that are explicitly known.

Physics 207: Lecture 10, Pg 3

Physics 207 - Lecture 10

Review: Scalar Product (or Dot Product) 7.3

- Useful for performing projections.

$$
\mathrm{A} \bullet \hat{\mathrm{I}}=\mathrm{A}_{\mathrm{x}}
$$

- Calculation is simple in terms of components.

$$
A \cdot B=\left(A_{x}\right)\left(B_{x}\right)+\left(A_{y}\right)\left(B_{y}\right)+\left(A_{z}\right)\left(B_{z}\right)
$$

Calculation also in terms of magnitudes and relative angles.

$$
\mathbf{A} \bullet \mathbf{B} \equiv|\mathrm{A}||\mathrm{B}| \cos \theta
$$

You choose the way that works best for you!
Physics 207: Lecture 10, Pg 8

See text: 7-1
Work: 1-D Example (constant force)

- A force $F=10 \mathrm{~N}$ pushes a box across a frictionless floor for a distance $\Delta \boldsymbol{x}=5 \mathrm{~m}$.

- Work is $\mathbf{A} \bullet \mathbf{B} \equiv|\mathrm{A}||\mathrm{B}| \cos \theta=\mathrm{F} \boldsymbol{\Delta} \boldsymbol{x}=10 \times 5 \mathrm{Nm}=50 \mathrm{~J}$
- 1 Nm is defined to be 1 Joule and this is a unit of energy
- Work reflects energy transfer

See example 7-1: Pushing a trunk.
Physics 207: Lecture 10, Pg 9

See text: 7-1
Work: 1-D $2^{\text {nd }}$ Example
(constant force)

- A force $F=10 \mathrm{~N}$ pushes a box across a frictionless floor for a distance $\Delta \boldsymbol{x}=5 \mathrm{~m}$.

- Work is $\mathbf{A} \bullet \mathbf{B} \equiv|\mathrm{A}||\mathrm{B}| \cos \theta=\mathrm{F} \boldsymbol{\Delta} \boldsymbol{x}(-1)=-10 \times 5 \mathrm{~N} \mathrm{~m}=-50 \mathrm{~J}$
- Work reflects energy transfer

See example 7-1: Pushing a trunk. Physics 207: Lecture 10. Pg 11

See text: 7-1

Work: 1-D $3^{\text {rd }}$ Example

 (constant force)- A force $F=10 \mathrm{~N}$ pushes a box across a frictionless floor for a distance $\Delta \boldsymbol{x}=5 \mathrm{~m}$.

- Work is $\mathbf{A} \bullet \mathbf{B} \equiv|\mathrm{A}||\mathrm{B}| \cos \theta=\mathrm{F} \boldsymbol{\Delta} \boldsymbol{x} \quad 0.71=50 \times 0.71 \mathrm{Nm}=35 \mathrm{~J}$
- Work reflects energy transfer

See example 7-1: Pushing a trunk
Physics 207: Lecture 10. Pg 12

Physics 207 - Lecture 10

A variable force device: A Hooke's Law Spring

- Springs are everywhere, (probe microscopes, DNA, an effective interaction between atoms)

- In this spring, the magnitude of the force increases as the spring is further compressed (a displacement).
- Hooke's Law,

$$
\mathrm{F}_{S}=-k \Delta \mathrm{x}
$$

> Active Figure
Δx is the amount the spring is stretched or compressed from it resting position.

Lecture 10, Exercise 2
 Hooke's Law

- Remember Hooke's Law,

$$
\mathrm{F}_{\mathrm{x}}=-k \Delta \mathrm{x}
$$

What are the units for the constant k ?
(A) $\frac{\mathrm{kg} \mathrm{m}^{2}}{\mathrm{~s}^{2}}$
(B) $\frac{\mathrm{kg} \mathrm{m}}{\mathrm{s}^{2}}$
(C) $\frac{\mathrm{kg}}{\mathrm{s}^{2}}$
(D) $\frac{\mathrm{kg}^{2} \mathrm{~m}}{\mathrm{~s}^{2}}$
F is in $\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$ and dividing by m gives $\mathrm{kg} / \mathrm{s}^{2}$ or N / m

Physics 207 - Lecture 10

Work \& Kinetic Energy: Energy transfer involving changes in speed

- A force, $F=10 \mathrm{~N}$, pushes a box across a frictionless floor for a distance $\Delta \boldsymbol{x}=5 \mathrm{~m}$.
- The speed of the box is v_{1} before the push, and v_{2} after the push.
- Consider only this force and the box
- Relate the work to the kinetic energy of the box

Example: Work Kinetic-Energy Theorem

- How much will the spring compress (i.e. $\Delta \boldsymbol{x}$) to bring the object to a stop (i.e., $v=0$) if the object is moving initially at a constant velocity (v_{o}) on frictionless surface as shown below?

Notice that the spring force is opposite to the displacemant.
For the mass m, work is negative
For the spring, work is positive

Physics 207 - Lecture 10

Lecture 10, Exercise 4 Kinetic Energy

- To practice your pitching you use two baseballs. The first time you throw a slow curve and clock the speed at $50 \mathrm{mph}(\sim 25 \mathrm{~m} / \mathrm{s})$. The second time you go with high heat and the radar gun clocks the pitch at 100 mph . What is the ratio of the kinetic energy of the fast ball versus the curve ball ?
(A) $1 / 4$
(B) $1 / 2$
(C) 1 (D) 2
(E) 4

Lecture 10, Exercise 5

 Work \& Friction- Two blocks having mass m_{1} and m_{2} where $\boldsymbol{m}_{1}>\boldsymbol{m}_{\boldsymbol{2}}$. They are sliding on a frictionless floor and have the same

Physics 207, Lecture 10, Recap

Agenda: Chapter 7, Work and Energy Transfer

- Definition of Work (a scalar quantity) kinetic energy when they encounter a long rough stretch
- Variable force devices (e.g., Hooke's Law spring)
- Work/Energy Theorem

$$
\star \mathrm{W}=\Delta \mathrm{K}
$$

- Kinetic Energy

$$
\nLeftarrow K=1 / 2 m v^{2}
$$

- Power (on Wednesday)
* $P=d W / d t=\boldsymbol{F} \cdot \boldsymbol{v}$

Assignment: For Wednesday read Chapter 8

- WebAssign Problem Set 4 due Tuesday next week (start now)

