

Summary (with comparison to 1-D kinematics)	
Angular	Linear
$\alpha = \text{constant}$	a = constant
$\omega = \omega_0 + \alpha t$	$\mathbf{v} = \mathbf{v}_0 + at$
$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$	$x = x_0 + \mathbf{v}_0 t + \frac{1}{2}a$
And for a point at a di	stance <i>R</i> from the rotation axis
$x = R \theta$	$v = \omega R$ $a = \alpha R$

