Physics 207 - Lecture 13

Physics 207, Lecture 13, Oct. 18
Agenda: Chapter 9, finish, Chapter 10 Start

- Chapter 9: Momentum and Collision
* Impulse
* Center of mass
- Chapter 10:
* Rotational Kinematics
* Rotational Energy
* Moments of Inertia
* Parallel axis theorem (Monday)
* Torque, Work and Rotational Energy (Monday) Assignment: For Monday read through Chapter 11
- WebAssign Problem Set 5 due Tuesday

Physics 207: Lecture 13, Pg 1

Example - Elastic Collision

- Suppose I have 2 identical bumper cars. One is motionless and the other is approaching it with velocity v_{1}. If they collide elastically, what is the final velocity of each car?

Identical means $m_{1}=m_{2}=m$
Initially $\mathrm{v}_{\text {Green }}=\mathrm{v}_{1}$ and $\mathrm{v}_{\text {Red }}=0$

- COM $\rightarrow \mathrm{mv}_{1}+0=\mathrm{mv}_{1 \mathrm{f}}+\mathrm{mv}_{2 f} \rightarrow \mathrm{v}_{1}=\mathrm{v}_{1 \mathrm{f}}+\mathrm{v}_{2 \mathrm{f}}$
- COE $\rightarrow 1 / 2 m v_{1}{ }^{2}=1 / 2 m v_{1 f}{ }^{2}+1 / 2 m v_{2 f}{ }^{2} \rightarrow v_{1}{ }^{2}=v_{1 f}{ }^{2}+v_{2 f}{ }^{2}$
- $\mathrm{v}_{1}{ }^{2}=\left(\mathrm{v}_{1 \mathrm{f}}+\mathrm{v}_{2 \mathrm{f}}\right)^{2}=\mathrm{v}_{1 \mathrm{f}}{ }^{2}+2 \mathrm{v}_{1 \mathrm{f}} \mathrm{v}_{2 \mathrm{f}}+\mathrm{v}_{2 \mathrm{f}}{ }^{2} \rightarrow 2 \mathrm{v}_{1 \mathrm{f}} \mathrm{v}_{2 \mathrm{f}}=0$
- Soln 1: $\mathrm{v}_{1 \mathrm{f}}=0$ and $\mathrm{v}_{2 \mathrm{f}}=\mathrm{v}_{1}$ Soln 2: $\mathrm{v}_{2 \mathrm{f}}=0$ and $\mathrm{v}_{1 \mathrm{f}}=\mathrm{v}_{1}$

Physics 207 - Lecture 13

Lecture 13, Exercise 3

Force \& Impulse

- Two boxes, one heavier than the other, are initially at rest on a horizontal frictionless surface. The same constant force F acts on each one for exactly 1 second.
\star Which box has the most momentum after the force acts ?
(A) heavier
(B) lighter
(C) same

Physics 207 - Lecture 13

Back of the envelope calculation (Boxer)

$\begin{array}{ll}\text { (1) } \boldsymbol{m}_{\text {arm }} \sim 7 \mathrm{~kg} & \text { (2) } \mathbf{v}_{\text {arm }} \sim 7 \mathrm{~m} / \mathrm{s} \text { (3) Impact time } \Delta \mathbf{t} \sim 0.01 \mathrm{~s}\end{array}$
\rightarrow Impulse I= $\boldsymbol{\Delta p} \sim m_{\text {arm }} v_{\text {arm }} \sim 49 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
$\rightarrow \mathbf{F} \sim \mathbf{I} / \Delta \mathbf{t} \sim 4900 \mathbf{N} \quad \boldsymbol{I}=\int^{t} \boldsymbol{F} d t \approx F_{\text {avg }} \Delta t$
(1) $m_{\text {head }} \sim 6 \mathrm{~kg}$
$\rightarrow a_{\text {head }}=F / m_{\text {head }} \sim 800 \mathrm{~m} / \mathrm{s}^{2} \sim 80 \mathrm{~g}!$

- Enough to cause unconsciousness $\boldsymbol{\sim} \mathbf{4 0 \%}$ of fatal blow

System of Particles:

- Until now, we have considered the behavior of very simple systems (one or two masses).
- But real objects have distributed mass !
- For example, consider a simple rotating disk.

- An extended solid object (like a disk) can be thought of as a collection of parts. The motion of each little part depends on where it is in the object!

Physics 207: Lecture 13, Pg 15

System of Particles: Center of Mass

- How do we describe the "position" of a system made up of many parts?
- Define the Center of Mass (average position): \star For a collection of N individual pointlike particles whose masses and positions we know:

$$
\overrightarrow{\boldsymbol{R}}_{\mathrm{CM}} \equiv \frac{\sum_{i=1}^{N} m_{i} \overrightarrow{\boldsymbol{r}}_{i}}{M}
$$

(In this case, $N=2$)
Physics 207: Lecture 13, Pg 17

See text: 9-6

Example Calculation:

- Consider the following mass distribution:

$$
\overrightarrow{\boldsymbol{R}}_{\mathrm{CM}}=\frac{\sum_{i=1}^{N} m_{i} \overrightarrow{\boldsymbol{r}}_{i}}{M}=X_{\mathrm{CM}} \hat{\mathbf{i}}+Y_{\mathrm{CM}} \hat{\mathbf{j}}+Z_{\mathrm{CM}} \hat{\mathbf{k}}
$$

$X_{\mathrm{CM}}=(m \times 0+2 \mathrm{~m} \times 12+\mathrm{m} \times 24) / 4 \mathrm{~m}$ meters

Physics 207 - Lecture 13

Center of Mass Example: Astronauts \& Rope

- Two astronauts are initially at rest in outer space and 20 meters apart. The one on the right has 1.5 times the mass of the other (as shown). The 1.5 m astronaut wants to get back to the ship but his jet pack is broken. There happens to be a rope connected between the two. The heavier astronaut starts pulling in the rope.
(1) Does he/she get back to the ship ?
(2) Does he/she meet the other astronaut?

Example: Astronauts \& Rope

(1) There is no external force so if the larger astronaut pulls on the rope he will create an impulse that accelerates him/her to the left and the small astronaut to the right. The larger one's velocity will be less than the smaller one's so he/she doesn't let go of the rope they will either collide (elastically or inelastically) and thus never make it.

Lecture 13, Exercise 4 Center of Mass Motion

- A woman weighs exactly as much as her 20 foot long boat.
- Initially she stands in the center of the motionless boat, a distance of 20 feet from shore. Next she walks toward the shore until she gets to the end of the boat.
* What is her new distance from the shore.
(There is no horizontal force on the boat by the water).

Center of Mass Motion: Review

- We have the following rule for Center of Mass (CM) motion:

$$
\overrightarrow{\boldsymbol{F}}_{E X T}=M \overrightarrow{\boldsymbol{a}}_{C M}
$$

- This has several interesting implications:

Active Figure

- It tell us that the CM of an extended object behaves like a simple point mass under the influence of external forces:
$\boldsymbol{*}$ We can use it to relate \boldsymbol{F} and \boldsymbol{a} like we are used to doing.
- It tells us that if $\boldsymbol{F}_{E X T}=0$, the total momentum of the system does not change.
* As the woman moved forward in the boat, the boat went backward to keep the center of mass at the same place.

Chap. 10: Rotation

- Up until now rotation has been only in terms of circular motion ($a_{c}=v^{2} / R$ and $\left.\left|a_{T}\right|=d|v| / d t\right)$
* We have not examined objects that roll.
* We have assumed wheels and pulley are massless.
- Rotation is common in the world around us.
- Virtually all of the ideas developed for translational motion and are transferable to rotational motion.

Physics 207 - Lecture 13

Rotation \& Kinetic Energy

- Consider the simple rotating system shown below. (Assume the masses are attached to the rotation axis by massless rigid rods).
- The kinetic energy of this system will be the sum of the kinetic energy of each piece:

$$
K=\frac{1}{2} \sum_{i=1}^{4} m_{i} \mathrm{v}_{i}^{2}
$$

- $K=1 / 2 m_{1} v_{1}{ }^{2}+1 / 2 m_{2} v_{2}{ }^{2}+1 / 2 m_{3} v_{3}{ }^{2}+1 / 2 m_{4} v_{4}{ }^{2}$

Physics 207 - Lecture 13

Rotation \& Kinetic Energy

- Notice that $v_{1}=\omega r_{1}, v_{2}=\omega r_{2}, v_{3}=\omega r_{3}, v_{4}=\omega r_{4}$
- So we can rewrite the summation:
$K=\frac{1}{2} \sum_{i=1}^{4} m_{i} \mathrm{v}_{i}^{2}=\frac{1}{2} \sum_{i=1}^{4} m_{i} \omega^{2} \mathrm{r}_{i}^{2}=\frac{1}{2}\left[\sum_{i=1}^{4} m_{i} \mathrm{r}_{i}^{2}\right] \omega^{2}$
- We define a "new" quantity, the moment of inertia or I (we use "I" again....)

(A) $1 /(B) 1 / 2$
(C) 1
(D) 2
(E) 4
- We have two balls of the same mass. Ball 1 is attached to a 0.1 m long rope. It spins around at 2 revolutions per second. Ball 2 is on a 0.2 m long rope. It spins around at 2 revolutions per second.
- What is the ratio of the kinetic energy of Ball 2 to that of Ball 1 ?

Rotation \& Kinetic Energy...

- The kinetic energy of a rotating system looks similar to that of a point particle:

Point Particle	Rotating System
$K=\frac{1}{2} m \mathrm{v}^{2}$	$K=\frac{1}{2} \mathrm{I} \omega^{2}$
v is "linear" velocity	
m is the mass.	I is angular velocity about the rotation axis. $\quad \mathrm{I}=\sum_{i} m_{i} r_{i}^{2}$

Physics 207: Lecture 13. Pg 33

Moment of Inertia

- So $K=\frac{1}{2} \mathrm{I} \omega^{2}$ where $\mathrm{I}=\sum_{i} m_{i} r_{i}^{2}$
- Notice that the moment of inertia I depends on the distribution of mass in the system.
* The further the mass is from the rotation axis, the bigger the moment of inertia.
- For a given object, the moment of inertia depends on where we choose the rotation axis (unlike the center of mass).
- In rotational dynamics, the moment of inertia I appears in the same way that mass m does in linear dynamics !

Physics 207, Lecture 13, Recap

Agenda: Chapter 9, finish, Chapter 10 Start

- Chapter 9: Momentum and Collision
* Impulse
* Center of mass
- Chapter 10:
* Rotational Kinematics
* Rotational Energy
* Moments of Inertia

Assignment: For Monday read through Chapter 11

- WebAssign Problem Set 5 due Tuesday

