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Physics 207 – Lecture 14

Physics 207: Lecture 14, Pg 1

Physics 207, Physics 207, Lecture 14, Oct. 23Lecture 14, Oct. 23
Agenda: Chapter 10, Finish,  Chapter 11, Just StartAgenda: Chapter 10, Finish,  Chapter 11, Just Start

Assignment:  For Wednesday reread Chapter 11, Start Chapter 12Assignment:  For Wednesday reread Chapter 11, Start Chapter 12

�� WebAssignWebAssign Problem Set 5 due Tuesday Problem Set 5 due Tuesday 
�� Problem Set 6, Ch 10Problem Set 6, Ch 10--79, Ch 1179, Ch 11--17,23,30,35,44abdef Ch 1217,23,30,35,44abdef Ch 12--4,9,21,32,354,9,21,32,35

� Chapter 10: 
� Moments of Inertia
� Parallel axis theorem
� Torque
� Energy and Work 

• Chapter 11
� Vector Cross Products
� Rolling Motion
� Angular Momentum
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Moment of Inertia and Rotational EnergyMoment of Inertia and Rotational Energy

� Notice that the moment of inertia I depends on the 
distribution of mass in the system.
� The further the mass is from the rotation axis, the 

bigger the moment of inertia.

� For a given object, the moment of inertia depends on 
where we choose the rotation axis (unlike the center of 
mass).

� In rotational dynamics, the moment of inertia I appears 
in the same way that mass m does in linear dynamics !

2
2
1 Iω=K ∑=

i
ii rm 2I� So where
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Lecture 14, Lecture 14, Exercise 1Exercise 1
Rotational Kinetic EnergyRotational Kinetic Energy

� We have two balls of the same mass. Ball 1 is 
attached to a 0.1 m long rope. It spins around at 2 
revolutions per second. Ball 2 is on a 0.2 m long rope. 
It spins around at 2 revolutions per second. 

� What is the ratio of the kinetic energy
of Ball 2 to that of Ball 1 ?
(A) 1/  (B) 1/2      (C) 1      (D) 2      (E) 4

Ball 1 Ball 2

2
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Lecture 14, Lecture 14, Exercise 1Exercise 1
Rotational Kinetic EnergyRotational Kinetic Energy

� K2/K1 = ½ m ωr2
2 / ½ m ωr1

2 = 0.22 / 0.12 = 4

� What is the ratio of the kinetic energy of Ball 2 to that 
of Ball 1 ?

(A) 1/  (B) 1/2      (C) 1      (D) 2      (E) 4

Ball 1 Ball 2
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Lecture 14, Lecture 14, Exercise 2Exercise 2
Moment of InertiaMoment of Inertia

� A triangular shape is made from identical balls and 
identical rigid, massless rods as shown.  The moment 
of inertia about the a, b, and c axes is Ia, Ib, and Ic
respectively.

� Which of the following is correct:

((A)A) Ia > Ib > Ic

(B)(B) Ia > Ic > Ib

(C)(C) Ib > Ia > Ic

a

b

c

∑=
i

ii rm 2I
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Lecture 14, Lecture 14, Exercise 2Exercise 2
Moment of InertiaMoment of Inertia

� Ia = 2 m (2L)2 Ib = 3 m L2 Ic = m (2L)2

� Which of the following is correct:

((A)A) Ia > Ib > Ic

(B)(B) Ia > Ic > Ib

(C)(C) Ib > Ia > Ic

a

b

c

L

L
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Calculating Moment of Inertia...Calculating Moment of Inertia...

� For a discrete collection of point 
masses we find:

� For a continuous solid object we have to add up the mr2

contribution for every infinitesimal mass element dm.

� An integral is required to find I :

∑
=

=
N

i
iirm

1

2I

r

dm

dmr∫= 2I

Physics 207: Lecture 14, Pg 8

Moments of InertiaMoments of Inertia

Solid disk or cylinder of mass M
and radius R, about  
perpendicular axis through its 
center.

I = ½ M R2

� Some examples of I for solid objects:

R
L

r
dr
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Moments of Inertia...Moments of Inertia...

� Some examples of I for solid objects:

Solid sphere of mass M and radius R, 
about an axis through its center.

I = 2/5  M R2

R

See Table 10.2, Moments of Inertia

Thin spherical shell of mass M and 
radius R, about an axis through its 
center.

Use the table…

R
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Moments of InertiaMoments of Inertia

� Some examples of I for solid objects:

Thin hoop (or cylinder) of mass M
and  radius R, about an axis 
through it center,  perpendicular 
to the plane of the hoop is just 
MR2

R

Thin hoop of mass M and radius R, 
about an axis through a diameter.

Use the table…

R
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Parallel Axis TheoremParallel Axis Theorem

� Suppose the moment of inertia of a solid object of 
mass M about an axis through the center of mass is 
known and is said to be ICM

� The moment of inertia about an axis parallel to this 
axis but a distance R away is given by:

IPARALLEL = ICM + MR2

� So if we know ICM , one can calculate the moment of 
inertia about a parallel axis.
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Parallel Axis Theorem: ExampleParallel Axis Theorem: Example

� Consider a thin uniform rod of mass M and length D. 
What is the moment of inertia about an axis through 
the end of the rod?

IPARALLEL = ICM + MD2

L

D = L/2 M
x

CM

ICMIEND
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Direction of Rotation:Direction of Rotation:

� In general, the rotation variables are vectors (have magnitude 
and direction)

� If the plane of rotation is in the x-y plane, then the convention 
is 

� CCW rotation is in 
the + z direction 

� CW rotation is in 
the - z direction

x

y

z

x

y

z
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Direction of Rotation:  The Right Hand RuleDirection of Rotation:  The Right Hand Rule

� To figure out in which direction the 
rotation vector points, curl the fingers of 
your right hand the same way the 
object turns, and your thumb will point 
in the direction of the rotation vector !

� In Serway the  z-axis to be the rotation 
axis as shown.

� θ  = θz

� ω = ωz

� α = αz

� For simplicity the subscripts are omitted 
unless explicitly needed.

x

y

z

x

y

z
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Newton’s 2nd law: RotationNewton’s 2nd law: Rotation

� Linear dynamics:

� Rotational dynamics:

Where τ is referred to as “torque” and τz is the 
component along the z-axis

zzz I ατ =

amF
rr

=

kji zyx
ˆˆˆ ττττ ++=r
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Rotational Dynamics: What makes it spin?Rotational Dynamics: What makes it spin?

τTOT = I α = |� FTang| r = |F| |r| sin φ

� This is the rotational version 
of  FTOT = ma

�� Torque is the rotational equivalent of force:Torque is the rotational equivalent of force:
The amount of “twist” provided by a force.
A big caveat (!) – Position of force vector matters (r)

�� Moment of inertiaMoment of inertia II is the rotational equivalent of mass.is the rotational equivalent of mass.
If I is big, more torque is required to achieve a given 
angular acceleration.

� Torque has units of kg m2/s2 = (kg m/s2) m = N m

aa

r

FFrandial

FFTangential

FF
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Newton’s 2nd law: RotationNewton’s 2nd law: Rotation
Vector formulationVector formulation

�Linear dynamics:

�Rotational dynamics:

amF
rr

=

dependent) axis is I (where

 ατ rr
I=

product" crossvector "  thedefine  weonce

sin||  ||  ||    where θττ FrFr =×=
rrr
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Lecture 14, Lecture 14, Exercise 3Exercise 3
TorqueTorque

� In which of the cases shown below is the torque provided 
by the applied force about the rotation axis biggest?  In 
both cases the magnitude and direction of the applied 
force is the same.

� Torque requires F, r and sin θ or translation along tangent
or the tangential force component times perpendicular distance

(A)(A) case 1

(B)(B) case 2

(C)(C) same
L

LF F

axis

case 1 case 2

r2
r1
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Lecture 14, Lecture 14, Exercise 3Exercise 3
TorqueTorque

� In which of the cases shown below is the torque 
provided by the applied force about the rotation axis 
biggest?  In both cases the magnitude and direction of 
the applied force is the same.

� Remember torque requires F, r and sin φ
or the tangential force component times perpendicular distance

(A)(A) case 1

(B)(B) case 2

(C)  (C)  same
L

LF F

axis

case 1 case 2

90°

FTang
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Torque (as a vector) and the Right Hand Rule:Torque (as a vector) and the Right Hand Rule:

� The right hand rule can tell you the direction of torque:
� Point your hand along the direction from the axis to 

the point where the force is applied.
� Curl your fingers in the direction of the force.
� Your thumb will point in the direction

of the torque. 

r r 

FF

x

y

z
ττττ

See text:  11.2
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The Vector Cross ProductThe Vector Cross Product
� The can obtain the vectorial nature of torque in  

compact form by defining a “vector cross product”.
� The cross product of two vectors is another vector:

AA x BB = CC

� The length of CC is given by:
|C | = |A| |B| sin φ

� The direction of CC is perpendicular to 
the plane defined by AA and BB, and in
the direction defined by the right-hand
rule.

AA

BB

CC

φφφφ

See text:  11.2
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� The cross product of unit vectors:

ii x ii == 0        0        ii x j j == k        k        ii x kk == --j j 
jj x i i == --k       k       jj x jj == 0        0        jj x kk == i i 
kk x i i == j      j      kk x jj == --i      i      kk x kk == 00

A X B = (AX i i + + AY jj + Azkk)   )   X   (BX i i + + BY jj + Bzkk) ) 

= (AX BX   i i x x i  i  ++ AX BY   i i xx jj ++ AX BZ   i i xx kk))
+ (AY BX   jj x x i  i  ++ AY BY   jj xx jj + + AY BZ   jj xx kk))
+ (AZ BX  kk x x i  i  ++ AZ BY  kk xx j j ++ AZ BZ   kk xx kk))

The Cross ProductThe Cross Product

ii

jj

kk
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The Cross ProductThe Cross Product

� Cartesian components of the cross product:

CC = AA X BB

CX = AY BZ - BY AZ

CY = AZ BX - BZ AX

CZ = AX BY - BX AY

Note:  B x A = - A x B

AA

BB

CC

φφφφ
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Torque & the Cross Product:Torque & the Cross Product:

x

y

z

�So we can define torque as:

ττττττττ = r r x FF
| τ | = |r | |F| sin φ
or
ττττX =  y FZ - z FY

ττττY =  z FX  - x FZ 

ττττZ =  x FY  - y FX 

use whichever works best

rr

FF

ττττττττ

φ
rr
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Work (in rotational motion)Work (in rotational motion)
� Consider the work done by a force FF acting on an 

object constrained to move around a fixed axis.  For 
an infinitesimal angular displacement dθ :where dr
=R dθ

    dW = FTangential dr

dW = (FTangential R) dθ

     dW = τ dθ  (and with a constant torque)
� We can integrate this to find:     W = τ θ  = τ (θf−θi)
� Analogue of  W = F •∆r
� W will be negative if τ and θ have opposite sign !

axis of
rotation

R

FF

dr =Rdθdθ

φ
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Work & Kinetic Energy:Work & Kinetic Energy:

� Recall the Work Kinetic-Energy Theorem:  ∆K = WNET

� This is true in general, and hence applies to rotational 
motion as well as linear motion.

� So for an object that rotates about a fixed axis:

( ) NET
22

2
1  I WK if =−=∆ ωω
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Newton’s 2nd law: RotationNewton’s 2nd law: Rotation

� Linear dynamics:

� Rotational dynamics:

Where τ is referred to as “torque” and I is axis
dependent (in Phys 207 we specify this axis and
reduce the expression to the z component).

FrI
rrvr ×== ατ

amF
rr

=
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Lecture 14, Lecture 14, Exercise 4Exercise 4
Rotational DefinitionsRotational Definitions

� A goofy friend sees a disk spinning and says “Ooh, 
look! There’s a wheel with a negative ω and with 
antiparallel ω and α!” 

� Which of the following is a true statement about the 
wheel?

(A)(A) The wheel is spinning counter-clockwise and slowing down.

(B) (B) The wheel is spinning counter-clockwise and speeding up.

(C)(C) The wheel is spinning clockwise and slowing down.

(D) The wheel is spinning clockwise and speeding up
?
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Lecture 15, Lecture 15, Exercise 4Exercise 4
Work & EnergyWork & Energy

� Strings are wrapped around the circumference of two solid 
disks and pulled with identical forces for the same linear 
distance. 
Disk 1 has a bigger radius, but both are identical material (i.e. 
their density ρ = M/V is the same).  Both disks rotate freely 
around axes though their centers, and start at rest.
� Which disk has the biggest angular velocity after the pull?

W = τ θ = F d = ½ I ω2

((A)A) Disk 1

(B)(B) Disk 2

(C)(C) Same
FF

ω1
ω2

start

finish
d
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Lecture 15, Lecture 15, Exercise 4Exercise 4
Work & EnergyWork & Energy

� Strings are wrapped around the circumference of two solid 
disks and pulled with identical forces for the same linear 
distance. 
Disk 1 has a bigger radius, but both are identical material (i.e. 
their density ρ = M/V is the same).  Both disks rotate freely 
around axes though their centers, and start at rest.
� Which disk has the biggest angular velocity after the pull?

W = F d = ½ I1 ω1
2= ½ I2 ω2

2

ω1 = (I2 / I1)½ ω2    and and I2 < I1
((A)A) Disk 1

(B)  (B)  Disk 2

(C)(C) Same
FF

ω1
ω2

start

finish
d
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Example: Rotating RodExample: Rotating Rod
� A uniform rod of length L=0.5 m and mass m=1 kg is free to 

rotate on a frictionless pin passing through one end as in 
the Figure.  The rod is released from rest in the horizontal 
position.  What is 
(A) its angular speed when it reaches the lowest point ?
(B) its initial angular acceleration ?
(C) initial linear acceleration of its free end ?

See example 10.14

L

m
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Example: Rotating RodExample: Rotating Rod
� A uniform rod of length L=0.5 m and mass m=1 kg is free to rotate 

on a frictionless hinge passing through one end as shown.  The rod 
is released from rest in the horizontal position.  What is

(B) its initial angular acceleration ?
1. For forces you need to locate the Center of Mass
CM is at L/2 ( halfway ) and put in the Force on a FBD
2. The hinge changes everything!

L

m

mg

Σ F = 0  occurs only at the hinge

but τz = I αz = r F sin 90°

at the center of mass and

(ICM + m(L/2)2) αz = (L/2) mg

and solve for αz
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Example: Rotating RodExample: Rotating Rod
� A uniform rod of length L=0.5 m and mass m=1 kg is free to rotate 

on a frictionless hinge passing through one end as shown.  The rod 
is released from rest in the horizontal position.  What is

(C) initial linear acceleration of its free end ?

1. For forces you need to locate the Center of Mass
CM is at L/2 ( halfway ) and put in the Force on a FBD
2. The hinge changes everything!

L

m

mg
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Example: Rotating RodExample: Rotating Rod
� A uniform rod of length L=0.5 m and mass m=1 kg is free to rotate 

on a frictionless hinge passing through one end as shown.  The rod 
is released from rest in the horizontal position.  What is 
(A) its angular speed when it reaches the lowest point ?
1. For forces you need to locate the Center of Mass
CM is at L/2 ( halfway ) and use the Work-Energy Theorem
2. The hinge changes everything!

m

mg

mg

L/2

L
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Connection with CM motionConnection with CM motion

� If an object of mass M is moving linearly at velocity VCM
without rotating then its kinetic energy is

2= ωCM2
1

RK I

2
CM2

12
CM2

1 VK MI += ω
� What if the object is both moving linearly and rotating? 

� If an object of moment of inertia ICM is rotating in place
about its center of mass at angular velocity ω then its 
kinetic energy is

2
CM2

1
T VK M=
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Connection with CM motion...Connection with CM motion...

� So for a solid object which rotates about its center 
of mass and whose CM is moving:

ω

VCM

2
CM2

12
CM2

1
TOT VK MI += ω
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Rolling MotionRolling Motion

� Now consider a cylinder rolling at a constant speed. 

VCM CM

The cylinder is rotating about CM and its CM is moving at 
constant speed (VCM).   Thus its total kinetic  energy is 
given by : 

2
CM2

12
CM2

1
TOT VK MI += ω
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Lecture 14, Lecture 14, Example: Example: The YoYo

� A solid uniform disk yoyo of radium R and mass M starts from 
rest, unrolls,  and falls a distance h.

(1) What is the angular acceleration?
(2) What will be the linear velocity of the center of mass after it
falls h meters?
(3) What is the tension on the cord ?

ω
M

h

T
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Lecture 14, Lecture 14, Example: Example: The YoYo

� A solid uniform disk yoyo of radium R and mass M starts from 
rest,  unrolls, and falls a distance h.

� Conceptual Exercise:  
Which of the following pictures correctly represents the yoyo 
after it falls a height h?

(A) (B) (C)

ω

M
h

T

h
ω

M

T

ω

M
h

T
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Lecture 14, Lecture 14, Example: Example: The YoYo

� A solid uniform disk yoyo of radium R and mass M starts from 
rest,  unrolls, and falls a distance h.

� Conceptual Exercise:  
Which of the following pictures correctly represents the yoyo 
after it falls a height h?

(A) (B) No Fx, no ax (C)

ω0

M
h

T

h
ω

M

T

ω

M
h

T

Mg
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Lecture 14, Lecture 14, Example: Example: The YoYo

� A solid uniform disk yoyo of radium R and mass M starts from 
rest, unrolls,  and falls a distance h.

(1) What is the angular acceleration?
(2) What will be the linear velocity of the center of mass after it
falls h meters?
(3) What is the tension on the cord ?

ω

M

h

TChoose a point and calculate the 
torque

Στ =   I αz = Mg R + T0 

( ½ MR2 + MR2 ) αz = Mg R

αz = Mg /(3/2 MR) = 2 g / (3R)

X
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Lecture 14, Lecture 14, Example: Example: The YoYo

� A solid uniform disk yoyo of radium R and mass M starts from 
rest, unrolls,  and falls a distance h.
(1) What is the angular acceleration?
(2) What will be the linear velocity of the center of mass after it 
falls h meters?
(3) What is the tension on the cord ?

ω

M

h

T Can use kinetics or work energy

X
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Lecture 14, Lecture 14, Example: Example: The YoYo

� A solid uniform disk yoyo of radium R and mass M starts from 
rest, unrolls,  and falls a distance h.
(1) What is the angular acceleration?
(2) What will be the linear velocity of the center of mass after it
falls h meters?
(3) What is the tension on the cord ?

ω

M

h

T

 aCM = αz R = -2g/3 

 MaCM =- 2Mg/3 = T – Mg

 T = Mg/3

 or from torques 

 I αz’ = TR = ½ MR2 (2g/3R)

 T = Mg/3

X
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Rolling MotionRolling Motion

� Again consider a cylinder rolling at a constant speed. 

VCM
CM

2VCM
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Example :Example : Rolling MotionRolling Motion

� A cylinder is about to roll down an inclined plane. What 
is its speed at the bottom of the plane ? 

M

θ

h

M
v ?

Ball has radius R

M M

M

M

M
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Lecture 14, RecapLecture 14, Recap
Agenda: Chapter 10, Finish,  Chapter 11, StartAgenda: Chapter 10, Finish,  Chapter 11, Start

Assignment:  For Wednesday reread Chapter 11, Start Chapter 12Assignment:  For Wednesday reread Chapter 11, Start Chapter 12
�� WebAssignWebAssign Problem Set 5 due Tuesday Problem Set 5 due Tuesday 

� Chapter 10: 
� Moments of Inertia
� Parallel axis theorem
� Torque
� Energy and Work 

• Chapter 11
� Vector Cross Products
� Rolling Motion
� Angular Momentum


