Physics 207 - Lecture 14

Physics 207, Lecture 14, Oct. 23
Agenda: Chapter 10, Finish, Chapter 11, Just Start

- Chapter 10:
* Moments of Inertia
* Parallel axis theorem
* Torque
* Energy and Work
- Chapter 11
* Vector Cross Products
* Rolling Motion
* Angular Momentum

Assignment: For Wednesday reread Chapter 11, Start Chapter 12

- WebAssign Problem Set 5 due Tuesday
- Problem Set 6, Ch 10-79, Ch 11-17,23,30,35,44abdef Ch 12-4,9,21,32,35

Physics 207: Lecture 14. Pg 1

Moment of Inertia and Rotational Energy

- So $K=\frac{1}{2} \mathrm{I} \omega^{2}$ where $\mathrm{I}=\sum_{i} m_{i} r_{i}^{2}$
- Notice that the moment of inertia I depends on the distribution of mass in the system.
$*$ The further the mass is from the rotation axis, the bigger the moment of inertia.
- For a given object, the moment of inertia depends on where we choose the rotation axis (unlike the center of mass).
- In rotational dynamics, the moment of inertia I appears in the same way that mass m does in linear dynamics !

Lecture 14, Exercise 1 Rotational Kinetic Energy

- $\mathrm{K}_{2} / \mathrm{K}_{1}=1 / 2 \mathrm{~m} \omega \mathrm{~m}_{2}{ }^{2} / 1 / 2 \mathrm{~m} \omega \mathrm{r}_{1}{ }^{2}=0.2^{2} / 0.1^{2}=4$
- What is the ratio of the kinetic energy of Ball 2 to that of Ball 1 ?
(A) $1 /$ (B) $1 / 2$
(C) 1
(D) 2
(E) 4

- Which of the following is correct:
(A) $\mathrm{I}_{\mathrm{a}}>\mathrm{I}_{\mathrm{b}}>\mathrm{I}_{\mathrm{c}}$
(B) $I_{\text {a }}>I_{\text {c }}>I_{b}$
(C) $\mathrm{I}_{\mathrm{b}}>\mathrm{I}_{\mathrm{a}}>\mathrm{I}_{\mathrm{c}}$

a b

Physics 207: Lecture 14, Pg 6

Physics 207 - Lecture 14

Moments of Inertia

- Some examples of I for solid objects:

Moments of Inertia..

- Some examples of I for solid objects:

Moments of Inertia

- Some examples of I for solid objects:

Thin hoop (or cylinder) of mass M and radius R, about an axis through it center, perpendicular to the plane of the hoop is just $M R^{2}$

Thin spherical shell of mass M and radius R, about an axis through its center.
Use the table...
See Table 10.2, Moments of Inertia Physics 207: Lecture 14, Pg 9

Thin hoop of mass M and radius R, about an axis through a diameter.
Use the table...
-

Physics 207: Lecture 14, Pg 10

Parallel Axis Theorem: Example

- Consider a thin uniform rod of mass M and length D. What is the moment of inertia about an axis through the end of the rod?

$$
\mathrm{I}_{\text {PARALLEL }}=\mathrm{I}_{\mathrm{CM}}+M D^{2}
$$

Physics 207 - Lecture 14

Direction of Rotation: The Right Hand Rule

- To figure out in which direction the rotation vector points, curl the fingers of your right hand the same way the object turns, and your thumb will point in the direction of the rotation vector !
- In Serway the z-axis to be the rotation axis as shown.
$\% \theta=\theta_{z}$
$\psi \omega=\omega_{z}$
* $\alpha=\alpha_{z}$

For simplicity the subscripts are omitted unless explicitly needed.

Physics 207: Lecture 14, Pg 14

- Rotational dynamics:

$$
\tau_{z}=I_{z} \alpha_{z}
$$

Where τ is referred to as "torque" and τ_{z} is the component along the z-axis

$$
\vec{\tau}=\tau_{x} \hat{i}+\tau_{y} \hat{j}+\tau_{z} \hat{k}
$$

Rotational Dynamics: What makes it spin?

Lecture 14, Exercise 3 Torque

- In which of the cases shown below is the torque provided by the applied force about the rotation axis biggest? In both cases the magnitude and direction of the applied force is the same.
- Torque requires $\boldsymbol{F}, \boldsymbol{r}$ and $\sin \theta$ or translation along tangent or the tangential force component times perpendicular distance
(A) case 1
(B) case 2
(C) same

Physics 207 - Lecture 14

Torque (as a vector) and the Right Hand Rule:

- The right hand rule can tell you the direction of torque:
* Point your hand along the direction from the axis to the point where the force is applied.
* Curl your fingers in the direction of the force.
* Your thumb will point in the direction of the torque.

The Cross Product

- The cross product of unit vectors:

$$
\begin{array}{lll}
i \times i=0 & i \times j=k & i \times k=-j \\
j \times i=-k & j \times j=0 & j \times k=i \\
k \times i=j & k \times j=-i & k \times k=0
\end{array}
$$

$\boldsymbol{A} \times \boldsymbol{B}=\left(A_{X} \boldsymbol{i}+A_{Y} \boldsymbol{j}+A_{z} \boldsymbol{k}\right) \times\left(B_{X} \boldsymbol{i}+B_{Y} \boldsymbol{j}+B_{z} \boldsymbol{k}\right)$
$=\left(A_{\mathrm{x}} B_{\mathrm{x}} i \nless \boldsymbol{k}+A_{\mathrm{x}} B_{\mathrm{y}} \boldsymbol{i \times j}+A_{\mathrm{x}} B_{\mathrm{z}} \boldsymbol{i \times k}\right)$
$+\left(A_{Y} B_{X} \boldsymbol{j} \times \boldsymbol{i}+A_{Y} B_{Y} \boldsymbol{j} \times \boldsymbol{j}+A_{Y} B_{Z} \boldsymbol{j} \times \boldsymbol{k}\right)$
$+\left(A_{z} B_{\mathrm{x}} \boldsymbol{k} \times \boldsymbol{i}+A_{z} B_{\mathrm{Y}} \boldsymbol{k} \times \boldsymbol{j}+A_{\mathrm{z}} B_{\mathrm{z}} \boldsymbol{k} \times \boldsymbol{k}\right)$
Physics 207: Lecture 14, Pg 22

Work \& Kinetic Energy:

- Recall the Work Kinetic-Energy Theorem: $\Delta K=W_{\text {NET }}$
- This is true in general, and hence applies to rotational motion as well as linear motion.
- So for an object that rotates about a fixed axis:

$$
\Delta K=\frac{1}{2} \mathrm{I}\left(\omega_{f}^{2}-\omega_{i}^{2}\right)=W_{\mathrm{NET}}
$$

Physics 207: Lecture 14, Pg 26

Newton's 2nd law: Rotation

- Linear dynamics: $\quad \vec{F}=m \vec{a}$
- Rotational dynamics:

Where τ is referred to as "torque" and I is axis dependent (in Phys 207 we specify this axis and reduce the expression to the z component).

Physics 207: Lecture 14. Pg 27

Lecture 14, Exercise 4 Rotational Definitions

- A goofy friend sees a disk spinning and says "Ooh, look! There's a wheel with a negative ω and with antiparallel ω and α !"
- Which of the following is a true statement about the wheel?
(A) The wheel is spinning counter-clockwise and slowing down.
(B) The wheel is spinning counter-clockwise and speeding up.
(C) The wheel is spinning clockwise and slowing down.
(D) The wheel is spinning clockwise and speeding up

Lecture 15, Exercise 4

 Work \& Energy- Strings are wrapped around the circumference of two solid disks and pulled with identical forces for the same linear distance.
Disk 1 has a bigger radius, but both are identical material (i.e. their density $\rho=M / V$ is the same). Both disks rotate freely around axes though their centers, and start at rest.
* Which disk has the biggest angular velocity after the pull?
$W=\tau \theta=F d=1 / 2 \mid \omega^{2}$
(A) Disk 1
(B) Disk 2
(C) Same

Lecture 15, Exercise 4

 Work \& Energy- Strings are wrapped around the circumference of two solid disks and pulled with identical forces for the same linear distance.
Disk 1 has a bigger radius, but both are identical material (i.e. their density $\rho=M / V$ is the same). Both disks rotate freely around axes though their centers, and start at rest
* Which disk has the biggest angular velocity after the pull?
$W=\mathrm{Fd}=1 / 2 \mathrm{I}_{1} \omega_{1}{ }^{2}=1 / 2 \mathrm{I}_{2} \omega_{2}{ }^{2}$
$\omega_{1}=\left(I_{2} / I_{1}\right)^{1 / 2} \quad \omega_{2}$ and $I_{2}<I_{1}$
(A) Disk 1
(B) Disk 2
(C) Same

Physics 207 - Lecture 14

Example: Rotating Rod

- A uniform rod of length $L=0.5 \mathrm{~m}$ and mass $m=1 \mathrm{~kg}$ is free to rotate on a frictionless pin passing through one end as in the Figure. The rod is released from rest in the horizontal position. What is
(A) its angular speed when it reaches the lowest point?
(B) its initial angular acceleration ?
(C) initial linear acceleration of its free end?

See example 10.14 Physics 207: Lecture 14. Pa 31

Example: Rotating Rod

- A uniform rod of length $L=0.5 \mathrm{~m}$ and mass $m=1 \mathrm{~kg}$ is free to rotate on a frictionless hinge passing through one end as shown. The rod is released from rest in the horizontal position. What is
(C) initial linear acceleration of its free end?

1. For forces you need to locate the Center of Mass

CM is at $\mathrm{L} / 2$ (halfway) and put in the Force on a FBD
2. The hinge changes everything!

L

Example: Rotating Rod

- A uniform rod of length $L=0.5 \mathrm{~m}$ and mass $m=1 \mathrm{~kg}$ is free to rotate on a frictionless hinge passing through one end as shown. The rod is released from rest in the horizontal position. What is (A) its angular speed when it reaches the lowest point? 1. For forces you need to locate the Center of Mass CM is at $\mathrm{L} / 2$ (halfway) and use the Work-Energy Theorem 2. The hinge changes everything!

Connection with CM motion

- If an object of mass M is moving linearly at velocity V_{CM} without rotating then its kinetic energy is

$$
\mathrm{K}_{\mathrm{T}}=\frac{1}{2} M \mathrm{~V}_{\mathrm{CM}}^{2}
$$

- If an object of moment of inertia $I_{C M}$ is rotating in place about its center of mass at angular velocity ω then its kinetic energy is

$$
\mathrm{K}_{\mathrm{R}}=\frac{1}{2} I_{\mathrm{CM}} \omega^{2}
$$

- What if the object is both moving linearly and rotating?

$$
\mathrm{K}=\frac{1}{2} I_{\mathrm{CM}} \omega^{2}+\frac{1}{2} M \mathrm{~V}_{\mathrm{CM}}^{2}
$$

Connection with CM motion...

- So for a solid object which rotates about its center of mass and whose CM is moving:

$$
\mathrm{K}_{\mathrm{TOT}}=\frac{1}{2} I_{\mathrm{CM}} \omega^{2}+\frac{1}{2} M \mathrm{~V}_{\mathrm{CM}}^{2}
$$

Physics 207 - Lecture 14

Rolling Motion

- Now consider a cylinder rolling at a constant speed.

The cylinder is rotating about CM and its CM is moving at constant speed $\left(\mathrm{V}_{\mathrm{CM}}\right)$. Thus its total kinetic energy is given by :

$$
\mathrm{K}_{\mathrm{TOT}}=\frac{1}{2} I_{\mathrm{CM}} \omega^{2}+\frac{1}{2} M \mathrm{~V}_{\mathrm{CM}}^{2}
$$

Lecture 14, Example: The YoYo

- A solid uniform disk yoyo of radium R and mass M starts from rest, unrolls, and falls a distance h.
- Conceptual Exercise:

Which of the following pictures correctly represents the yoyo

Lecture 14, Example: The YoYo

- A solid uniform disk yoyo of radium R and mass M starts from rest, unrolls, and falls a distance h.
- Conceptual Exercise:

Which of the following pictures correctly represents the yoyo after it falls a height h ?

Lecture 14, Example: The YoYo

- A solid uniform disk yoyo of radium R and mass M starts from rest, unrolls, and falls a distance h.
(1) What is the angular acceleration?
(2) What will be the linear velocity of the center of mass after it falls h meters?
(3) What is the tension on the cord ?

Choose a point and calculate the torque

$$
\Sigma \tau=\mathrm{I} \alpha_{z}=\mathrm{MgR}+\mathrm{T} 0
$$

$$
\left(1 / 2 M R^{2}+M R^{2}\right) \alpha_{z}=M g R
$$

$$
\alpha_{\mathrm{z}}=\mathrm{Mg} /(3 / 2 \mathrm{MR})=2 \mathrm{~g} /(3 \mathrm{R})
$$

Lecture 14, Example: The YoYo

- A solid uniform disk yoyo of radium R and mass M starts from rest, unrolls, and falls a distance h.
(1) What is the angular acceleration?
(2) What will be the linear velocity of the center of mass after it falls h meters?
(3) What is the tension on the cord?

Physics 207 - Lecture 14

Lecture 14, Example: The YoYo

- A solid uniform disk yoyo of radium R and mass M starts from rest, unrolls, and falls a distance h.
(1) What is the angular acceleration?
(2) What will be the linear velocity of the center of mass after it falls h meters?
(3) What is the tension on the cord?
$\mathrm{a}_{\mathrm{CM}}=\alpha_{\mathrm{z}} \mathrm{R}=-2 \mathrm{~g} / 3$
$\mathrm{Ma}_{\mathrm{CM}}=-2 \mathrm{Mg} / 3=\mathrm{T}-\mathrm{Mg}$
$\mathrm{T}=\mathrm{Mg} / 3$
or from torques
I $\alpha_{z^{\prime}}=$ TR $=1 / 2$ MR $^{2}(2 g / 3 R)$
$\mathrm{T}=\mathrm{Mg} / 3$

Lecture 14, Recap

Agenda: Chapter 10, Finish, Chapter 11, Start

- Chapter 10:
* Moments of Inertia
* Parallel axis theorem
* Torque
* Energy and Work
- Chapter 11
* Vector Cross Products
* Rolling Motion
* Angular Momentum

Assignment: For Wednesday reread Chapter 11, Start Chapter 12 - WebAssign Problem Set 5 due Tuesday

