Physics 207 - Lecture 15

Physics 207, Lecture 15, Oct. 25
Agenda: Chapter 11, Finish, Chapter 12, Just Start

- Chapter 11:
* Rolling Motion
* Angular Momentum
- Chapter 12
* Statics

Assignment: For Monday read Chapter 12

- WebAssign Problem Set 6 due Tuesday
- Problem Set 6, Ch 10-79, Ch 11-17,23,30,35,44abdef Ch 12-4,9,21,32,35

Physics 207: Lecture 15

Motion

- Again consider a cylinder rolling at a constant speed.

Rolling Motion

- Again consider a cylinder rolling at a constant speed.

Example : Rolling Motion

- A cylinder is about to roll down an inclined plane. What is its speed at the bottom of the plane ?

Page 1

Physics 207 - Lecture 15

$p=m v$
 Angular Momentum: Definitions \& Derivations

- We have shown that for a system of particles

$$
\overrightarrow{\boldsymbol{F}}_{\mathrm{EXT}}=\frac{d \overrightarrow{\boldsymbol{p}}}{d t} \quad \checkmark \begin{gathered}
\text { Momentum is conserved if } \\
\boldsymbol{F}_{\mathrm{EXT}}=0
\end{gathered}
$$

- What is the rotational equivalent of this?
- The rotational analog of force \boldsymbol{F} is torque
- Define the rotational analog of momentum \boldsymbol{p} to be
angular momentum, L or

Recall from Chapter 9: Linear Momentum

- Definition: For a single particle, the momentum \boldsymbol{p} is defined as:

So $p_{x}=m v_{x}$ etc.

- Newton's $2^{\text {nd }}$ Law:
$F=m a$
$=m \frac{d \overrightarrow{\mathrm{v}}}{d t}=\frac{d}{d t}(m \overrightarrow{\mathrm{v}}) \quad \square \overrightarrow{\boldsymbol{F}=\frac{d \overrightarrow{\mathrm{p}}}{d t}}$
- Units of linear momentum are $\mathrm{kg} \mathrm{m} / \mathrm{s}$.

Linear Momentum and Angular Momentum

- So from:

- Newton's $2^{\text {nd }}$ Law:

$$
F=m a
$$

$$
\begin{gathered}
=m \frac{d \overrightarrow{\mathrm{v}}}{d t}=\frac{d}{d t}(m \overrightarrow{\mathrm{v}}) \\
\overrightarrow{\boldsymbol{F}}=\frac{d \overrightarrow{\mathrm{p}}}{d t}
\end{gathered}
$$

- Units of angular momentum are $\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}$.

Physics 207: Lecture 15, Pg 9

Page 2

Physics 207 - Lecture 15

Example: Two Disks

- A disk of mass M and radius R rotates around the z axis with angular velocity ω_{0}. A second identical disk, initially not rotating, is dropped on top of the first. There is friction between the disks, and eventually they rotate together with angular velocity ω_{F}.

Example: Two Disks

- A disk of mass M and radius R rotates around the z axis with initial angular velocity ω_{0}. A second identical disk, at rest, is dropped on top of the first. There is friction between the disks, and eventually they rotate together with angular velocity ω_{F}.
No External Torque so L_{z} is constant
$L_{i}=L_{f} \rightarrow I \omega_{0}+0=I_{\mathrm{f}} \omega_{\mathrm{f}}$

Demonstration:

 Conservation of Angular Momentum- Figure Skating :
$\xrightarrow{\longrightarrow} \xrightarrow{\longrightarrow}$

No External Torque so L_{z} is constant even if internal work done.

Physics 207: Lecture 15, Pg 15

Demonstration: Conservation of Angular Momentum

- Figure Skating

No External Torque so L_{z} is constant even if internal work done.
Physics 207: Lecture 15, Pg 16

Example: Bullet hitting stick

- A uniform stick of mass M and length D is pivoted at the center. A bullet of mass m is shot through the stick at a point halfway between the pivot and the end. The initial speed of the bullet is v_{1}, and the final speed is v_{2}.
What is the angular speed ω_{F} of the stick after the collision? (Ignore gravity)

Physics 207 - Lecture 15

Example: Bullet hitting stick

- What is the angular speed ω_{F} of the stick after the collision? (Ignore gravity).
- Process: (1) Define system (2) Identify Conditions
(1) System: bullet and stick (No Ext. torque, L is constant)
(2) Momentum is conserved ($I_{\text {stick }}=I=M D^{2} / 12$) $L_{\text {init }}=L_{\text {final }}$

Physics 207: Lecture 15 Pa

Example: Throwing ball from stool

- A student sits on a stool, initially at rest, but which is free to rotate. The moment of inertia of the student plus the stool is I. They throw a heavy ball of mass M with speed v such that its velocity vector moves a distance d from the axis of rotation.
\star What is the angular speed ω_{F} of the student-stool system after they throw the ball?

Top view: before
after
Physics 207: Lecture 15, Pg 20

Example: Throwing ball from stool

- What is the angular speed ω_{F} of the student-stool system after they throw the ball ?
- Process: (1) Define system (2) Identify Conditions
(1) System: student, stool and ball (No Ext. torque, L is constant)
(2) Momentum is conserved

Top view: before
after

Lecture 15, Exercise 1 Concepts

- A constant force F is applied to a dumbbell for a time interval Δt, first as in case (a) and then as in case (b). Remember $\mathrm{W}=\mathrm{F} \Delta \mathrm{x}$ but I (impulse) $=\mathrm{F} \Delta \mathrm{t}$
- In which case does the dumbbell acquire the greater center-of-mass speed? (The bar is massless and rigid.)

$\boldsymbol{\tau}_{\mathrm{EXT}}=\frac{d \boldsymbol{L}}{d t} \quad$ Gyroscopic Motion: $\quad \tau_{\mathrm{EXT}}=\boldsymbol{r} \times \boldsymbol{F}_{\mathrm{EX1}}$
- Suppose you have a spinning gyroscope in the configuration shown below:
- If the right support is removed, what will happen?
- Notice that there is a "torque" (mgr) into the display The gyro may fall slightly but there is $\Delta \mathrm{L}$ (a vector), which in time Δt, is caused by this torque, or a clockwise rotation

Physics 207 - Lecture 15

Summary of rotation:	
Comparison between Rotation and Linear Motion $\theta=x / R$ x $\omega=v / R$ v $\alpha=a / R$ a 	

Comparison:	
Angular	Linear
$\mathrm{I}=\Sigma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}{ }^{2}$	m
$\tau=\mathrm{r} \times \mathrm{F}=\alpha \mathrm{I}$	$\mathrm{F}=\mathrm{am} \mathrm{m}$
$\mathrm{L}=\mathrm{r} \times \tau=\mathrm{I} \omega$	$\mathrm{p}=\mathrm{mv}$
$\tau_{E X T}=\frac{d \mathrm{~L}}{d t}$	$F_{E X T}=\frac{d p}{d t}$
$W=\tau \Delta \theta$	$W=F \cdot \Delta \boldsymbol{x}$
$K=\frac{1}{2} \mathrm{I} \omega^{2}$	$K=\frac{1}{2} m v^{2}$
$\Delta K=W_{N E T}$	$\Delta K=W_{N E T}$

Lecture 15, Exercise 3

- A mass $m=0.10 \mathrm{~kg}$ is attached to a cord passing through a small hole in a frictionless, horizontal surface as in the Figure. The mass is initially orbiting with speed $\omega_{i}=5 \mathrm{rad} / \mathrm{s}$ in a circle of radius $\mathrm{r}_{\mathrm{i}}=0.20 \mathrm{~m}$. The cord is then slowly pulled from below, and the radius decreases to $r=0.10 \mathrm{~m}$. How much work is done moving the mass from r_{i} to r ?
(A) 0.15 J
(B) 0 J
(C) -0.15 J

Lecture 15, Exercise 3

- A mass $m=0.10 \mathrm{~kg}$ is attached to a cord passing through a

An example: Neutron Star rotation

Neutron star with a mass of 1.5 solar masses has a diameter of $\sim 11 \mathrm{~km}$.
Our sun rotates about once every 37 days
$\omega_{\mathrm{f}} / \omega_{\mathrm{i}}=\mathrm{I}_{\mathrm{i}} / \mathrm{I}_{\mathrm{f}}=\mathrm{r}_{\mathrm{i}}{ }^{2} / \mathrm{r}_{\mathrm{f}}{ }^{2}=\left(7 \times 10^{5} \mathrm{~km}\right)^{2} /(11 \mathrm{~km})^{2}=4 \times 10^{9}$ gives millisecond periods!

 period of pulsar is 1.187911164 s

Physics 207 - Lecture 15

Angular Momentum as a Fundamental Quantity

- The concept of angular momentum is also valid on a submicroscopic scale
- Angular momentum has been used in the development of modern theories of atomic, molecular and nuclear physics
- In these systems, the angular momentum has been found to be a fundamental quantity
* Fundamental here means that it is an intrinsic property of these objects

Physics 207:Lecture 15 Pa 31

Angular Momentum of a Molecule

- Consider the molecule as a rigid rotor, with the two atoms separated by a fixed distance
- The rotation occurs about the center of mass in the plane of the page with a speed of

Statics (Chapter 12): A repeat of Newton's Laws with no net force and no net torque

Physics 207 - Lecture 15

- Now consider a plank of mass M suspended by two strings as shown.
- We want to find the tension in each string:

$$
\sum \vec{F}=0 \quad \sum \vec{\tau}=0
$$

Approach to Statics:

- In general, we can use the two equations

$$
\sum F=0 \quad \sum \tau=0
$$

to solve any statics problems.

- When choosing axes about which to calculate torque, choose one that makes the problem easy...

Physics 207, Lecture 15, Oct. 25
Agenda: Chapter 11, Finish, Chapter 12, Just Start

- Chapter 11:
* Rolling Motion
* Angular Momentum
- Chapter 12
* Statics (next time)

Assignment: For Monday read Chapter 12

- WebAssign Problem Set 6 due Tuesday
- Problem Set 6, Ch 10-79, Ch 11-17,23,30,35,44abdef Ch 12-4,9,21,32,35

Physics 207: Lecture 15. Pg 39

