

Summary of	rotation:
Comparison between Rota	ation and Linear Motion
American	Lincor
Angular	Linear
$\theta = x/R$	x
$\omega = v/R$	v
$\alpha = a/R$	а

Comparison Kinematics		
Angular	Linear	
α = constant	a = constant	
$\omega = \omega_0 + \alpha t$	$\mathbf{v} = \mathbf{v}_0 + at$	
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	$x = x_0 + v_0 t + \frac{1}{2}at^2$	
$\omega^2 - \omega_0^2 = 2\alpha\theta$	$v^{2} - v_{0}^{2} = 2 ax$	
$\omega_{\rm AVE} = \frac{1}{2}(\omega + \omega_0)$	$\mathbf{v}_{\text{AVE}} = \frac{1}{2} (\mathbf{v} + \mathbf{v}_{0})$	

Comparison: Dynamics	
Angular	Linear
$I=\Sigma_i\ m_i\ r_i^2$	m
$\tau = r \ge F = \alpha I$	F = a m
$L = r \times \tau = I \omega$	p = mv
$\tau_{EXT} = \frac{d\mathbf{L}}{dt}$	$F_{EXT} = \frac{d\boldsymbol{p}}{dt}$
$W = \tau \Delta \theta$	<i>W</i> = <i>F</i> •∆ <i>x</i>
$K = \frac{1}{2} \mathrm{I} \omega^2$	$K = \frac{1}{2}mv^2$
$\Delta K = W_{NET}$	$\Delta K = W_{NET}$

Physics 207: Lecture 15, Pg 31

