





























| Comparison<br>Kinematics                                 |                                                                       |  |
|----------------------------------------------------------|-----------------------------------------------------------------------|--|
| Angular                                                  | Linear                                                                |  |
| $\alpha$ = constant                                      | a = constant                                                          |  |
| $\omega = \omega_0 + \alpha t$                           | $\mathbf{v} = \mathbf{v}_0 + at$                                      |  |
| $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ | $x = x_0 + v_0 t + \frac{1}{2}at^2$                                   |  |
| $\omega^2 - \omega_0^2 = 2\alpha\theta$                  | $v^{2} - v_{0}^{2} = 2 ax$                                            |  |
| $\omega_{\rm AVE} = \frac{1}{2}(\omega + \omega_0)$      | $\mathbf{v}_{\text{AVE}} = \frac{1}{2} (\mathbf{v} + \mathbf{v}_{0})$ |  |
| I                                                        |                                                                       |  |

| Comparison: Dynamics                                                |                                        |
|---------------------------------------------------------------------|----------------------------------------|
| Angular                                                             | Linear                                 |
| $I = \Sigma_i \ m_i \ r_i^2$                                        | m                                      |
| $\tau = \mathbf{r} \times \mathbf{F} = \alpha I$                    | F = m a                                |
| $L = \mathbf{r} \times \mathbf{p} = \mathbf{I} \boldsymbol{\omega}$ | p = mv                                 |
| $\tau_{EXT} = \frac{d\mathbf{L}}{dt}$                               | $F_{EXT} = \frac{d\boldsymbol{p}}{dt}$ |
| $W = \tau \Delta \theta$                                            | <i>W</i> = <i>F</i> •∆ <i>x</i>        |
| $K = \frac{1}{2} \mathbf{I} \boldsymbol{\omega}^2$                  | $K = \frac{1}{2}mv^2$                  |
| $\Delta K = W_{NET}$                                                | $\Delta K = W_{NET}$                   |



## Physics 207 – Lecture 17



Physics 207: Lecture 17, Pg 19