Physics 207 - Lecture 18

Physics 207, Lecture 18, Nov. 6

- Agenda: Chapter 14, Fluids
* Mean 58.4 (64.6)
* Median 58
* St. Dev. 16 (19)
* High 94
* Low 19

Nominal curve: (conservative) 80-100 A 62-79 B or A/B 34-61 C or B/C 29-33 marginal 19-28 D

* Pressure, Work
* Pascal's Principle
\& Archimedes' Principle
* Fluid flow

Assignments:

- Problem Set 7 due Nov. 14, Tuesday 11:59 PM Note: Ch. 14: 2,8,20,30,52a,54 (look at 21)

Ch. 15: 11,19,36,41,49 Honors: Ch. 14: 58

- For Wednesday, Read Chapter 15

Physics 207: Lecture 18, Pg 2

Fluids (Chapter 14)

- At ordinary temperature, matter exists in one of three states
* Solid - has a shape and forms a surface
\& Liquid - has no shape but forms a surface
\& Gas - has no shape and forms no surface
- What do we mean by "fluids"?
* Fluids are "substances that flow" "substances that take the shape of the container"
\& Atoms and molecules are free to move.
* No long range correlation between positions.

Some definitions

- Elastic properties of solids :
\& Young's modulus: measures the resistance of a solid to a change in its length.

* Shear modulus: measures the resistance to motion of the planes of a solid sliding past each other.

elasticity of shape (ex. pushing a book)
\& Bulk modulus: measures the resistance of solids or liquids to changes in their volume. volume elasticity

Physics 207: Lecture 18, Pg 4

Fluids

- What parameters do we use to describe fluids? \& Density

$$
\rho=\frac{m}{\mathrm{~V}} \quad \mathrm{~kg} / \mathrm{m}^{3} \frac{\text { units }}{=10^{-3}} \mathrm{~g} / \mathrm{cm}^{3}
$$

$\rho($ water $)=1.000 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}=1.000 \mathrm{~g} / \mathrm{cm}^{3}$
ρ (ice) $=0.917 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}=0.917 \mathrm{~g} / \mathrm{cm}^{3}$
ρ (air) $=1.29 \mathrm{~kg} / \mathrm{m}^{3} \quad=1.29 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$
$\rho(\mathrm{Hg})=13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}=13.6 \mathrm{~g} / \mathrm{cm}^{3}$
Physics 207: Lecture 18, Pg 5

Fluids

- What parameters do we use to describe fluids?

$$
\begin{aligned}
& \text { \& Pressure } \quad p=\frac{F}{\mathrm{~A}} \\
& \frac{\text { units : }}{1 \mathrm{~N} / \mathrm{m}^{2}}=1 \mathrm{~Pa} \text { (Pascal) }
\end{aligned}
$$

$1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$
$1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
$=1013 \mathrm{mba}$
$=760 \mathrm{Torr}$
$1 \mathrm{mbar}=10^{2} \mathrm{~Pa} \quad=760$ Torr

$$
1 \text { torr }=133.3 \mathrm{~Pa}
$$

- Any force exerted by a fluid is perpendicular to a surface of contact, and is proportional to the area of that surface.
\& Force (a vector) in a fluid can be expressed in terms of pressure (a scalar) as:

$$
\begin{equation*}
\overrightarrow{\mathbf{F}}=p \hat{\mathbf{A}} \hat{\mathbf{n}} \tag{array}
\end{equation*}
$$

Physics 207 - Lecture 18

Pressure vs. Depth

Pressure VS. Depth

- For a uniform fluid in an open
container pressure same at a given
depth independent of the container
Fluid level is the same everywhere in
a connected container, assuming no
surface forces
Why is this so? Why does the
pressure below the surface depend
only on depth if it is in equilibrium?
F Imagine a tube that would connect two regions at the same depth.
If the pressures were different, fluid would flow in the tube!
Sowever, if fluid did flow, then the system was NOT in equilibrium
since no equilibrium system will spontaneously leave equilibrium.

Pressure Measurements: Barometer

- Invented by Torricelli
- A long closed tube is filled with mercury and inverted in a dish of mercury
* The closed end is nearly a vacuum
- Measures atmospheric pressure as One $1 \mathrm{~atm}=0.760 \mathrm{~m}$ (of Hg)

Lecture 18, Exercise 1
 Pressure

- What happens with two fluids??
- Consider a U tube containing liquids of density ρ_{1} and ρ_{2} as shown:
\& Compare the densities of the liquids:
(A) $\rho_{1}<\rho_{2}$
(B) $\rho_{1}=\rho_{2}$
(C) $\rho_{1}>\rho_{2}$

Pascal's Principle

- So far we have discovered (using Newton's Laws):
\& Pressure depends on depth: $\Delta p=\rho g \Delta y$
- Pascal's Principle addresses how a change in pressure is transmitted through a fluid.

Any change in the pressure applied to an enclosed fluid is transmitted to every portion of the fluid and to the walls of the containing vessel.

- Pascal's Principle explains the working of hydraulic lifts \& i.e., the application of a small force at one place can result in the creation of a large force in another.
\& Will this "hydraulic lever" violate conservation of energy?
$>$ No

Pascal's Principle

- Consider the system shown:
* A downward force F_{1} is applied to the piston of area A_{1}.
* This force is transmitted through the liquid to create an upward force F_{2}.

* Pascal's Principle says that increased pressure from F_{1} (F_{1} / A_{1}) is transmitted throughout the liquid.
- $F_{2}>F_{1}$: Is there conservation of energy?

Physics 207 - Lecture 18

Archimedes' Principle

- Suppose we weigh an object in air (1) and in water (2).
\& How do these weights compare?

$$
\begin{array}{ll|l}
\mathrm{W}_{1}<\mathrm{W}_{2} & \mathrm{~W}_{1}=\mathrm{W}_{2} & \mathrm{~W}_{1}>\mathrm{W}_{2}
\end{array}
$$

\& Why?
Since the pressure at the bottom of the object is greater than that at the top of the object, the water exerts a net upward force, the buoyant force, on the object.

Sink or Float?

- The buoyant force is equal to the weight of the liquid that is displaced.
- If the buoyant force is larger than the weight of the object, it will float;
otherwise it will sink.

- We can calculate how much of a floating object will We can caicuiate how much
be submerged in the liquid:

$$
\star \text { Object is in equilibrium } \Rightarrow F_{B}=m g
$$

$$
\begin{aligned}
& \Rightarrow \rho_{\text {liquid }} \cdot g \cdot V_{\text {liquid }}=\rho_{\text {object }} \cdot g \cdot V_{\text {object }} \\
& \Rightarrow \frac{V_{\text {liquid }}}{V_{\text {object }}}=\frac{\rho_{\text {object }}}{\rho_{\text {liquid }}}
\end{aligned} \underbrace{\underbrace{2}}_{\text {Physics 207: Lecture } 18, \mathrm{Pg} 16}
$$

Physics 207: Lecture 18, Pg 15

Lecture 18, Exercise 3 Buoyancy

- A lead weight is fastened to a large styrofoam block and the combination floats on water with the water level with the top of the styrofoam block as shown.
\& If you turn the styrofoam +Pb upside-down,
What happens?

Physics 207 - Lecture 18


```
    Ideal Fluids
    - Streamlines do not meet or cross
    - Velocity vector is tangent to
    streamline
    - Volume of fluid follows a tube of flow
        bounded by streamlines
- Streamline density is proportional to
    velocity
- Flow obeys continuity equation
Volume flow rate \(\mathrm{Q}=\mathrm{A} \cdot \mathrm{v}\) is constant along flow tube.
\[
A_{1} v_{1}=A_{2} v_{2}
\]
Follows from mass conservation if flow is incompressible.

\section*{Lecture 18 Exercise 6 Continuity}
- A housing contractor saves some money by reducing the size of a pipe from 1" diameter to \(1 / 2^{\prime \prime}\) diameter at some point in your house.
\& Assuming the water moving in the pipe is an ideal fluid, relative to its speed in the 1 "diameter pipe, how fast is the water going in the \(1 / 2^{\prime \prime}\) pipe?
(A) \(2 \mathrm{v}_{1}\)
(B) \(4 \mathrm{v}_{1}\)
(C) \(1 / 2 \mathrm{v}_{1}\)
(D) \(1 / 4 \mathrm{v}_{1}\)

\section*{Lecture 18 Exercise 6 Continuity}
- A housing contractor saves some money by reducing the size of a pipe from 1" diameter to \(1 / 2^{\prime \prime}\) diameter at some point in
 your house.
(A) \(2 \mathrm{v}_{1}\)
(B) \(4 \mathrm{v}_{1}\)
(C) \(1 / 2 v_{1}\)
(D) \(1 / 4 \mathrm{v}_{1}\)
*. For equal volumes in equal times then \(1 / 2\) the diameter implies \(1 / 4\) the area so the water has to flow four times as fast.
* But if the water is moving four times as fast the it has 16 times as much kinetic energy. Something must be doing work on the water (the pressure drops at the neck and we recast the work as \(P \Delta V=(F / A)(A \Delta x)=F \Delta x)\)

\section*{Conservation of Energy for} Ideal Fluid
- Recall the standard work-energy relation \(W=\Delta K=K_{f}-K_{i}\)
* Apply the principle to a section of flowing fluid with volume \(\Delta \mathrm{V}\) and mass \(\Delta \mathrm{m}=\rho \Delta \mathrm{V}\) (here \(W\) is work done on fluid)
* Net work by pressure difference over \(\Delta x\left(\Delta x_{1}=v_{1} \Delta t\right)\)
\(W=F_{1} \Delta x_{1}-F_{2} \Delta x_{2}=\left(F_{1} / A_{1}\right)\left(A_{1} \Delta x_{1}\right)-\left(F_{2} / A_{2}\right)\left(A_{2} \Delta x_{2}\right)\)
\(=P_{1} \Delta V_{1}-P_{2} \Delta V_{2}\)
and \(\Delta \mathrm{V}_{1}=\Delta \mathrm{V}_{2}=\Delta \mathrm{V}\) (incompressible)
\(W=\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \Delta V\) and
\(W=1 / 2 \Delta m v_{2}{ }^{2}-1 / 2 \Delta m v_{1}{ }^{2}\)
\(=1 / 2(\rho \Delta V) v_{2}{ }^{2}-1 / 2(\rho \Delta V) v_{1}{ }^{2}\)
\(\left(P_{1}-P_{2}\right)=1 / 2 \rho v_{2}{ }^{2}-1 / 2 \rho v_{1}{ }^{2}\)
\(P_{1}+1 / 2 \rho v_{1}^{2}=P_{2}+1 / 2 \rho v_{2}^{2}=\) const.


Bernoulli Equation \(\rightarrow P_{1}+1 / 2 \rho v_{1}{ }^{2}+\rho g y_{1}=\) constant

Lecture 18 Exercise 7 Bernoulli's Principle
- A housing contractor saves some money by reducing the size of a pipe from 1" diameter \(\xrightarrow{\mathrm{v}_{1}}\) to 1/2" diameter at some point in your house.
2) What is the pressure in the \(1 / 2\) " pipe relative to the 1" pipe?
(A) smaller
(B) same
(C) larger


Physics 207 - Lecture 18


Lecture 18, Recap
- Agenda: Chapter 14, Fluids
\& Pressure, Work
\& Pascal's Principle
* Archimedes' Principle
* Fluid flow

Assignments:
- Problem Set 7 due Nov. 14, Tuesday 11:59 PM

Note: Ch. 14: 2,8,20,30,52a,54 (look at 21)
Ch. 15: 11,19,36,41,49 Honors: Ch. 14: 58
- For Wednesday, Read Chapter 15```

