Physics 207 — Lecture 19

Physics 207, Lecture 19, Nov. 8 Fluids in Motion
e Agenda: Chapter 14, Finish, Chapter 15, Start o Up to now we have described fluids in
& Ch. 14: Fluid flow terms of their static properties:

« Densit
« Ch. 15: Oscillatory motion . yp

L ) “ Pressure p

« Linear oscillator

« Simple pendulum . . .

. p_ P ® To describe fluid motion, we need
« Physical pendulum

something that can describe flow:
« Velocity v

« Torsional pendulum

Assignments: o There are different kinds of fluid flow of varying complexity
e Problem Set 7 due Nov. 14, Tuesday 11:59 PM % non-steady / steady
e For Monday, Finish Chapter 15, Start Chapter 16 % compressible / incompressible

* rotational / irrotational

Ry

% viscous / ideal

K3

K3
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Types of Fluid Flow Types of Fluid Flow
® Laminar flow ¢

<+ Each particle of the fluid
follows a smooth path

< The paths of the different
particles never cross each
other

< The path taken by the
particles is called a
streamline

e Turbulent flow

< An irregular flow
characterized by small
whirlpool like regions

‘ <« Turbulent flow occurs when

e Laminar flow

< Each particle of the fluid
follows a smooth path

< The paths of the different
particles never cross each
other

< The path taken by the
particles is called a
streamline

e Turbulent flow
< An irregular flow
characterized by small
whirlpool like regions
<« Turbulent flow occurs when

the particles go above some
critical speed

the particles go above some
critical speed

Physics 207: Lecture 19, Pg 3

Physics 207: Lecture 19, Pg 4

Onset of Turbulent Flow

SO
0

Ideal Fluids

e Fluid dynamics is very complicated in general (turbulence,
The SeaWifS satellite vortices, etc.)

image of a von Karman e Consider the simplest case first: the Ideal Fluid
vortex around < No “viscosity” - no flow resistance (no internal friction)

Guadalupe Island, < Incompressible - density constant in space and time
August 20, 1999

® Simplest situation: consider ideal
fluid moving with steady flow -
velocity at each point in the flow is
constant in time

@ In this case, fluid moves on
streamlines
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Ideal Fluids

e Streamlines do not meet or cross

® Velocity vector is tangent to -
streamline Az
A

1

e Volume of fluid follows a tube of flow

bounded by streamlines N

=<V

e Streamline density is proportional to
velocity

e Flow obeys continuity equation

Volume flow rate Q = A:v__is constant along flow tube.

Az

Follows from mass conservation if flow is incompressible.
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Conservation of Energy for
Ideal Fluid
o Recall the standard work-energy relation W = AK = K; - K;

<+ Apply the principle to a section of flowing fluid with volume AV
and mass Am = p AV (here W is work done on fluid)

“ Net work by pressure difference over Ax (Ax, = v, At)
«“ Focus firston W = F Ax
W = F, Ax, — F, AX,

= (Fo/AD) (Alxy) — (FolAy) (Ay AXy)

=P, AV, -P,AV,
and AV, = AV, = AV (incompressible)

W = (P,— P, ) AV

Bernoulli Equation > P,+ %2 pv,? + pgy, = constant
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Lecture 19 Exercise 1
Continuity

e A housing contractor saves v
some money by reducing the 1 Vi
size of a pipe from 1" diameter —
to 1/2” diameter at some point in
your house.

«+ Assuming the water moving in the pipe is an ideal fluid,
relative to its speed in the 1” diameter pipe, how fast is
the water going in the 1/2” pipe?

®2v, B4y, (C)12v, (D)14v,
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Conservation of Energy for
Ideal Fluid
o Recall the standard work-energy relation W = AK = K; - K;

W = (P,—-P,)AV and

W =2 Am v,2 — %2 Am v,?

=% (PAV) v,? — %2 (PAV) v N
(Pi=P,) =2 p vy =¥ pv,?

P+ % pv,?=P,+ % pv,2= constant
(in a horizontal pipe)

Bernoulli Equation > P,+ %2 pv,2 + p gy, = constant
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Lecture 19 Exercise 2
Bernoulli's Principle

e A housing contractor saves v, Vi
some money by reducing the
size of a pipe from 1” diameter
to 1/2” diameter at some point in
your house.

2) What is the pressure in the 1/2” pipe relative to the
1" pipe?

(A) smaller (B) same (C) larger
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Applications of Fluid Dynamics

e Streamline flow around a
moving airplane wing

e Lift is the upward force on "
the wing from the air —Lift

e Drag is the resistance

e The lift depends on the
speed of the airplane, the
area of the wing, its
curvature, and the angle lower velocity
between the wing and the igher pressure
horizontal

Drag
-

higher velocity ||

Note: density of flow lines reflects
velocity, not density. We are assuming
an incompressible fluid.
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Back of the envelope calculation

e Boeing 747-400

e Dimensions:
<+ Length: 231 ft 10 inches
“Wingspan: 211 ft 5 in
< Height: 63 ft 8 in

e Weight:
< Empty: 399, 000 |b
< Max Takeoff (MTO): 800, 000 Ib
< Payload: 249, 122 Ib cargo

-

e Performance:
<+ Cruising Speed: 583 mph
< Range: 7,230 nm

® p(v2-Vv)/2=P—P,=AP

Let v,=220.0m/s v,=210 m/s

So AP =3 x 103 Pa = 0.03 atm

or 0.5 Ibs/in?

Let an area of 200 ft x 15 ft
produce lift or 4.5 x 105 in?
orjust 2.2 x 10°Ibs - upshot
1. Downward deflection

2. Bernoulli (a small part)

3. Circulation theory
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Venturi
Bernoulli's Eq.
P+ %pvl(2 =Py + %pv«z?
Az

v = T"Ug
1

A \2 1. 3
B+ %p(71> vg? = Py + Epvf
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Cavitation  venturi result vy =

La cavitation
In the vicinity of high velocity fluids, the pressure can gets so low that
the fluid vaporizes.
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Chapter 15
Simple Harmonic Motion (SHM)

e We know that if we stretch a spring with a mass
on the end and let it go the mass will oscillate
back and forth (if there is no friction).

k
N L
e This oscillation is called —

. f ; k
Simple Harmonic Motion I‘WWJW./L.

and if you understand a
Lo

sine or cosine is
straightforward to
A———

understand.
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SHM Dynamics

e At any given instant we know

that F = ma must be true. ~—F=Kkx

k a~—
AN

® But in this case F = -k x

and ma = m&
T dt? —_—
d?x X
oSo:—kxzmazm?

Simple approach, guess a solution and see if it works!
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SHM Solution...

e Either cos (wt) or sin (wt) can work
® Below is a drawing of A cos (wt)
o where A = amplitude of oscillation

T=21mw

N

N
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SHM Solution...

e What to do if we need the sine solution?
o Notice A cos( wt + @) = A [cos(wt) cos(@) - sin(wt) sin(g)
= [A cos(@)] cos(wt) - [A sin(@)] sin(wt)
= A’ cos(wt) + A" sin(wt) (sine and cosine)
e Drawing of A cos( wt + @)

4,1 q);..i

NSRS
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SHM Solution...

e Drawing of A cos (wt - T72)

—lg=-m2e—

-n ,\/n ]

=Asin(wt)

Physics 207: Lecture 19, Pg 20

What about Vertical Springs?

e For a vertical spring, if y is measured from
the equilibrium position 1
U==ky?
2 ky
e Recall: force of the spring is the negative
derivative of this function:
du _ k

F=—T"=-k
dy Y

o This will be just like the horizontal case:
42 y < y=0
dt 2 ; [ F=y

Which has solution y(t) = A cos( wt + @) where

-ky=ma=m

Physics 207: Lecture 19, Pg 21

Velocity and Acceleration

Position: X(t) = A cos(wt + @) )
Velocity: V() = -wA sin(wt + @) <] zz:iizt?\?es
Acceleration: a(t) = -w?A cos(wt + ¢) since: '
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Lecture 19, Exercise 3
Simple Harmonic Motion
e A mass oscillates up & down on a spring. It's position as a
function of time is shown below. At which of the points

shown does the mass have positive velocity and negative
acceleration ?

Remember: velocity is slope and acceleration is the curvature

T

y(t)
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Example
® A mass m = 2 kg on a spring oscillates with amplitude

A =10cm. Att=0 its speed is at a maximum, and is v=+2
m/s

< What is the angular frequency of oscillation w ?

< What is the spring constant k ?

General relationships E =K + U = constant, w = (k/m)*
So at maximum speed U=0 and %2 mv2 = E = %; kA?

thus k = mv2/A2= 2 x (2) 2/(0.1)2= 800 N/m, w = 20 rad/sec

k
Iﬁ/\/‘vW‘MNvL.

N
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Lecture 19, Example 4

Initial Conditions Initial Conditions
i o ) e A mass hanging from a vertical spring is lifted a
Use “initial conditions” to determine phase ¢! distance d above equilibrium and released at t = 0.

Which of the following describe its velocity and
acceleration as a function of time (upwards is positive y
direction):

(A) v(t) =-Vpsin(wt) a(t) = -ap.cos( wt)

X\ m / 0 (B) V() = Vg Sin(wt)  at) = ap,cos(wt) K
IWA VA\A»‘EA VA\/\/\l cos sin (C) V() = VyaxCOS(wt) — a(t) = -a,, cos(wt )

_'_._‘ P
o M (both v, and a,,,, are positive numbers)
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Energy of the Spring -Mass System Energy of the Spring -Mass System
We know enough to discuss the mechanical energy of the Add to get E = K + U = constant.
oscillating mass on a spring. Yom (WA )2sin2( ot + @)+ 1/2 k (A cos( wt + 9))2
X(t)= Acos(wt+ @) _ |k _k
Remember, |y = -wA sin( o + @) Remember that ¥~ E:Nf—a
a(t) = -wPA cos(at + ) so, E = Y k AZsin?(ct + @) * ¥ kA2 cos?(ct + @)
=Yk A?2[ sin?(wt + @) * cos?(wt +
Kinetic energy is always i ['sin @ cos( ol
=%k A?
K =% mv?
K=%m[-wA sin( wt + @)]? E =% kA?
And the potential energy of a spring is, \/
— 2 U~cog? K~sin? )
U=%kx Active
U=%k[Acos (wt+@]? n 8 Figure
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SHM So Far The Simple Pendulum
ey = e A pendulum is made by suspending a mass m at the
’ end of a string of length L. Find the frequency o
® The most general solution is x = A cos(wt + @) o of ; flength L. Find the f f
where A = amplitude oscillation for small displacements.
w = (angular) frequency 3 F,=ma,=T-mg cos(6) =mv2/L
@= phase constant > F,= ma, = -mg sin(6)
e For SHM without fricti If @ small then x OL 6 and sin(6) 06
or without friction, dw/dt = L de/dt
% The frequency does not depend on the amplitude ! a= de/zdtz = L— dze/dtz ,
% We will see that this is true of all simple harmonic motion! soa,= -g@=Ld8/dt? > L d*0/dt>-g6=0
. I)hrgeoissc!gtcl)(!)n occurs around the equilibrium point where the ar_ld 6= 6,cos(t+ @ orB= 8 sin(wt+ ¢
e Energy is a constant, it transfers between potential and with @ = (g/L)*
kinetic.
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The Rod Pendulum

e A pendulum is made by suspending a thin rod of
length L and mass M at one end. Find the frequency
of oscillation for small displacements.

21,=la=-|rxF]|=(L/2) mg sin(6)
(no torque from T)
-[mL%/12+m (L/2)2] a O L/2mg 6
-1/3 L d?e/dt2=%2g O 0
CM

The rest is for homework...
mg
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General Physical Pendulum

® Suppose we have some arbitrarily shaped
solid of mass M hung on a fixed axis, that
we know where the CM is located and
what the moment of inertia | about the
axis is.

e The torque about the rotation (z) axis for
small Bis (sin®006)

d2
T=-MgR siné 0 -MgR6 » - MgR6 =1 p»
- -
T
2
wz-wze where
dt

=> 0 =0,cos(wt + @
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Torsion Pendulum

e Consider an object suspended by a wire
attached at its CM. The wire defines the
rotation axis, and the moment of inertia |
about this axis is known.

e The wire acts like a “rotational spring”.

“ When the object is rotated, the wire
is twisted. This produces a torque
that opposes the rotation.

« In analogy with a spring, the torque
produced is proportional to the
displacement: T=-k 0
where K is the torsional spring
constant

wire

& = (K%
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Reviewing Simple Harmonic Oscillators

—
= -kx

® Spring-mass system k3
%*wzx where w:\]% o
=> Xx(t) = A cos( wt + @
e Pendula (;%e?wze

=> 0 =0,cos(wt+ ¢
« General physical pendulum w= MILR

wire

« Torsion pendulum w=|K 0
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Energy in SHM

e For both the spring and the pendulum, we can
derive the SHM solution using energy
conservation.

e The total energy (K + U) of a U
system undergoing SMH will
always be constant!

® This is not surprising since A 0 A
there are only conservative
forces present, hence energy is conserved.
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SHM and quadratic potentials

o SHM will occur whenever the potential is quadratic.
e For small oscillations this will be true:
e For example, the potential between

H atoms in an H, molecule looks
something like this:
U
U
u
X A0 AK
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Lecture 19, Recap
e Agenda: Chapter 14, Finish, Chapter 15, Start

« Ch. 14: Fluid flow

« Ch. 15: Oscillatory motion
« Linear spring oscillator

« Simple pendulum

« Physical pendulum

« Torsional pendulum

Assignments:
e Problem Set 7 due Nov. 14, Tuesday 11:59 PM
e For Monday, Finish Chapter 15, Start Chapter 16
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