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Physics 207 – Lecture 20

Physics 207: Lecture 20, Pg 1

Physics 207, Physics 207, Lecture 20, Nov. 13Lecture 20, Nov. 13
�� Agenda: Agenda: Chapter 15, Finish, Chapter 16, Begin

�� Simple pendulumSimple pendulum

�� Physical pendulumPhysical pendulum

�� TorsionalTorsional pendulum pendulum 

� Energy
� Damping
� Resonance
� Chapter 16, Traveling Waves

Assignments:Assignments:

�� Problem Set 7 due Nov. 14, Tuesday 11:59 PMProblem Set 7 due Nov. 14, Tuesday 11:59 PM

�� Problem Set 8 due Nov. 21, Tuesday 11:59 PMProblem Set 8 due Nov. 21, Tuesday 11:59 PM

Ch. 16: Ch. 16: 3, 18, 30, 40, 58, 59 (Honors) Ch. 17: 3, 15, 34, 38, 40

�� For Wednesday, Finish Chapter 16, Start Chapter 17For Wednesday, Finish Chapter 16, Start Chapter 17
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Energy of the SpringEnergy of the Spring--Mass SystemMass System

We know enough to discuss the mechanical energy of the 
oscillating mass on a spring.

Kinetic energy is always 
K = ½ mv2

K = ½ m [ -ωA sin( ωt + φ )]2

And the potential energy of a spring is,
U = ½ k x2

U = ½ k [ A cos (ωt + φ) ]2

x(t) =     A cos( ωt + φ )
v(t) = -ωA  sin( ωt + φ )
a(t) = -ω2A cos(ωt + φ)

Remember,
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Energy of the SpringEnergy of the Spring--Mass SystemMass System

Add to get E = K + U = constant.

½ m ( ωA )2 sin2( ωt + φ ) + 1/2 k (A cos( ωt + φ ))2

Recalling

ππππ 2ππππ θθθθ

m

k

m

k == ⇒ 2ωω

U~cos2
K~sin2

E = ½  kA2

so, E = ½ k A2 sin2(ωt + φ) +  ½ kA2 cos2(ωt + φ)
= ½ k A2 [ sin2(ωt + φ) +  cos2(ωt + φ)]
= ½ k A2 with θ = ωt + φ

Active
Figure
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SHM So FarSHM So Far

� The most general solution is x = A cos(ωt + φ)
where A = amplitude 

ω = (angular) frequency
φ = phase constant 

� For SHM without friction,

� The frequency does not depend on the amplitude !
� We will see that this is true of all simple harmonic motion!

� The oscillation occurs around the equilibrium point where the 
force is zero! 

� Energy is a constant, it transfers between potential and 
kinetic.

m

k=ω
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The Simple PendulumThe Simple Pendulum

� A pendulum is made by suspending a mass m at the 
end of a string of length L.  Find the frequency of 
oscillation for small displacements.
Σ Fy = mac = T – mg cos(θ) = m v2/L
Σ Fx = max = -mg sin(θ)
If θ small then  x ≅ L θ and sin(θ) ≅ θ

dx/dt = L  dθ/dt
ax = d2x/dt2 = L d2θ/dt2

so ax =  -g θ = L d2θ / dt2  � L d2θ / dt2 - g θ = 0

and   θ =  θ0 cos(ωt + φ) or θ =  θ0 sin(ωt + φ)
with    ω = (g/L)½

θθθθ L

m

mg

z

y

x

T
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Lecture 20, Lecture 20, Exercise 1Exercise 1
Simple Harmonic MotionSimple Harmonic Motion

� You are sitting on a swing.  A friend gives you a small 
push and you start swinging back & forth with period T1.

� Suppose you were standing on the swing rather than 
sitting. When given a small push you start swinging back 
& forth with period T2.  

Which of the following is true recalling that ω = (g/L)½

(A) T1  = T2

(B) T1  > T2

(C) T1  < T2 T1 T2
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The Rod PendulumThe Rod Pendulum

� A pendulum is made by suspending a thin rod of 
length L and mass M at one end.  Find the frequency 
of  oscillation for small displacements (i.e., θ ≅ sin θ).

Σ τz = I α = -| r x F | = (L/2) mg sin(θ) 
(no torque from T)

-[ mL2/12 + m (L/2)2 ]  α ≅ L/2 mg θ
 -1/3 L d2θ/dt2 = ½ g  θ
 

 The rest is for homework…

θθθθ
L

mg

z

xCM

T
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General Physical PendulumGeneral Physical Pendulum

� Suppose we have some arbitrarily shaped 
solid of mass M hung on a fixed axis, that 
we know where the CM is located and
what the moment of inertia I about the 
axis is.

� The torque about the rotation (z) axis for 
small θ is  (sin θ ≅ θ )                                                              

τ = -MgR sinθ ≅ -MgRθ    ����
θθθθ

Mg

z-axis

R

xCM

d

dt

2

2
2θ ω θ= − ω = MgR

I
where

θ = θ0 cos(ωt + φ)

2

2

dt
d

IMgR
θ=θ−

τ α
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Torsion PendulumTorsion Pendulum

� Consider an object suspended by a wire 
attached at its CM.  The wire defines the 
rotation axis, and the moment of inertia I
about this axis is known.  

� The wire acts like a “rotational spring”.
� When the object is rotated, the wire is 

twisted.  This produces a torque that 
opposes the rotation.

� In analogy with a spring, the torque 
produced is proportional to the 
displacement: τ = - κ θ
where κ is the torsional spring constant

� ω = (κ / I)½

I

wire

θ
τ
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TorsionalTorsional spring constant of DNAspring constant of DNA
� Session Y15: Biosensors and Hybrid Biodevices
� 11:15 AM–2:03 PM, Friday, March 25, 2005 LACC - 405

� Abstract: Y15.00010 : Optical measurement of DNA torsional modulus 
under various stretching forces

� Jaehyuck Choi, Kai Zhao, Y.-H. Lo  Department of Electrical and Computer 
Engineering, [Department of Physics University of California at San Diego, La 
Jolla, California 92093-0407 We have measured the torsional spring modulus 
of a double stranded-DNA by applying an external torque around the axis of a 
vertically stretched DNA molecule. We observed that the torsional modulus of 
the DNA increases with stretching force. This result supports the hypothesis 
that an applied stretching force may raise the intrinsic torsional modulus of 
ds-DNA via elastic coupling between twisting and stretching. This further 
verifies that the torsional modulus value (C = 46.5 +/- 10 pN nm) of a ds-DNA 
investigated under Brownian torque (no external force and torque) could be 
the pure intrinsic value without contribution from other effects such as 
stretching, bending, or buckling of DNA chains. 

DNA

half gold sphere
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Lecture 20, Lecture 20, Exercise 2Exercise 2
PeriodPeriod

� All of the following torsional pendulum bobs have the same 
mass and ω = (κ/I)½

� Which pendulum rotates the slowest, i.e. has the longest 
period? (The wires are identical, κ is constant)

RRRR

(A) (B) (C) (D)
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Reviewing Simple Harmonic OscillatorsReviewing Simple Harmonic Oscillators

θθθθ

Mg

z-axis

R

xCM

ω = MgR
I

d

dt

2

2
2θ ω θ= −

θ = θ0 cos( ωt + φ)

k

x

m
FF = -kx

aa

I

wire

θ
τ

I
κω =

d x
dt

x
2

2
2= −ω ω = k

m

x(t) = A cos( ωt + φ)

where

� Spring-mass system

� Pendulums

� General physical pendulum

� Torsion pendulum
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Energy in SHMEnergy in SHM

� For both the spring and the pendulum, 
we can derive the SHM solution and 
examine U and K

� The total energy (K + U) of a 
system undergoing SMH will 
always be constant !

� This is not surprising since 
there are only conservative  
forces present, hence mechanical 
energy ought be conserved.

-A A0
x

U

U

K
E
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SHM and quadratic potentialsSHM and quadratic potentials

� SHM will occur whenever the potential is quadratic.
� For small oscillations this will be true:
� For example, the potential between

H atoms in an H2 molecule looks
something like this:

-A A0
x

U

U

K
EU

x

Physics 207: Lecture 20, Pg 15

See: http://hansmalab.physics.ucsb.edu

SHM and quadratic potentialsSHM and quadratic potentials
� Curvature reflects the spring constant
or modulus (i.e., stress vs. strain or
force vs. displacement)

Measuring modular proteins with an AFM

U
x
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What about Friction?What about Friction?

� Friction causes the oscillations to get smaller over time
� This is known as DAMPING.
� As a model, we assume that the force due to friction is 

proportional to the velocity, Ffriction = - b v .
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What about Friction?What about Friction?

2

2

dt

xd
m
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dx
bkx =−−

We can guess at a new solution. 
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What about Friction?What about Friction?

What does this function look like?
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Damped Simple Harmonic MotionDamped Simple Harmonic Motion

� There are three mathematically distinct regimes

22 )2/( mbo −= ωω

mbo 2/=ω mbo 2/<ω

underdamped critically damped overdamped

mbo 2/>ω
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Physical properties of a globular protein (mass 100 Physical properties of a globular protein (mass 100 kDakDa))

� Mass 166 x 10-24 kg
� Density 1.38 x 103 kg / m3
� Volume 120 nm3

� Radius 3 nm
� Drag Coefficient 60 pN-sec / m

� Deformation of protein in a viscous fluid
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Driven SHM with ResistanceDriven SHM with Resistance
� Apply a sinusoidal force,  F0 cos (ωt), and now consider 

what A and b do,

222
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Microcantilever resonance-based DNA detection with 
nanoparticle probes

Change the mass of the cantilever and change the resonant 
frequency and the mechanical response.

Su et al., APPL. PHYS. LETT.  82: 3562 (2003)

Physics 207: Lecture 20, Pg 23

Stick Stick -- Slip FrictionSlip Friction

� How can a constant motion produce resonant 
vibrations?

� Examples:
� Violin
� Singing / Whistling
� Tacoma Narrows Bridge
�…
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Dramatic example of resonanceDramatic example of resonance

� In 1940, a steady wind set up a torsional vibration in the 
Tacoma Narrows Bridge
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A short clipA short clip

� In 1940, a steady wind sets up a torsional vibration in the 
Tacoma Narrows Bridge
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Dramatic example of resonanceDramatic example of resonance

 

� Large scale torsion at the bridge’s natural frequency
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Dramatic example of resonanceDramatic example of resonance

 

� Eventually it collapsed
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Lecture 20, Lecture 20, Exercise 3Exercise 3
Resonant MotionResonant Motion

� Consider the following set of pendulums all attached to the 
same string

D

A

B

C

If I start bob D swinging which of the others will have the 
largest swing amplitude ?

(A) (B) (C)
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Waves Waves (Chapter 16)(Chapter 16)

� Oscillations:
� Movement around one equilibrium point 

� Waves:
� Look only at one point: oscillations
� But: changes in time and space (i.e., in 2 dimensions!)
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What is a wave ?What is a wave ?

� A definition of a wave:
� A wave is a traveling disturbance that transports 

energy but not matter.

� Examples:
� Sound waves (air moves back & forth)
� Stadium waves (people move up & down)
� Water waves (water moves up & down)
� Light waves (an oscillating electromagnetic field)

Animation



Page 6

Physics 207 – Lecture 20

Physics 207: Lecture 20, Pg 31

Types of WavesTypes of Waves

� Transverse: The medium’s displacement is 
perpendicular to the direction the wave is moving.
� Water (more or less)
� String waves

� Longitudinal: The medium’s displacement is in 
the same direction as the wave is moving
� Sound
� Slinky
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Wave PropertiesWave Properties

λ
Wavelength

� Wavelength: The distance λ between identical points on 
the wave.

� Amplitude: The maximum displacement A of a point on the

wave.

A

Animation
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Wave Properties...Wave Properties...

� Period: The time T for a point on the wave to 
undergo one complete oscillation.

� Speed: The wave moves one wavelength λ in 
one period T so its speed is v = λ / T.

T

λ=v
Animation
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Lecture 20, Lecture 20, Exercise 4Exercise 4
Wave MotionWave Motion

� The speed of sound in air is a bit over 300 m/s, and 
the speed of light in air is about 300,000,000 m/s.  

� Suppose we make a sound wave and a light wave 
that both have a wavelength of 3 meters. 
What is the ratio of the frequency of the light wave to 

that of the sound wave ?  (Recall v = λ / T = λ f )

(A) About  1,000,000

(B) About  0.000,001

(C) About  1000
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Wave FormsWave Forms

� So far we have examined 
“continuous wavescontinuous waves” that go 
on forever in each direction !

v

v� We can also have “pulses”
caused by a brief disturbance
of the medium:

v 
� And “pulse trains” which are

somewhere in between.
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Lecture 20, Lecture 20, Exercise 5Exercise 5
Wave MotionWave Motion

� A harmonic wave moving in the positive x direction
can be described by the equation   

(The wave varies in space and time.)

� v = λ / T = λ f    = (λ/2π ) (2π f) = ω / k and, by 
definition, ω > 0

� y(x,t) = A cos ( (2π / λ) x - ωt ) = A cos (k x – ω t )
� Which of the following equation describes a harmonic 

wave moving in the negative x direction ?

(A)  y(x,t) = A sin  ( k x − ωt )

(B) y(x,t) = A cos (  k x + ωt )

(C) y(x,t) = A cos (−k x + ωt )
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Lecture 20, Lecture 20, Exercise 6Exercise 6
Wave MotionWave Motion

� A boat is moored in a fixed location, and waves make it 
move up and down.  If the spacing between wave crests is 
20 meters and the speed of the waves is 5 m/s, how long 
∆t does it take the boat to go from the top of a crest to the 
bottom of a trough ? (Recall v = λ / T = λ f )

(A) 2 sec (B) 4 sec (C) 8 sec

t

t + ∆t
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Waves on a stringWaves on a string

� What determines the speed of a wave ? 

� Consider a pulse propagating along a string:

v 

� “Snap” a rope to see such a pulse

� How can you make it go faster ?
Animation
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Waves on a string...Waves on a string...

� The tension in the string is F

� The mass per unit length of the string is µ (kg/m)

� The shape of the string at the pulse’s maximum is 
circular and has radius R

Rµ

F 

Suppose:Suppose:
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Waves on a string...Waves on a string...

� So we find:

µ
= F

v

� Making the tension bigger increases the speed.

� Making the string heavier decreases the speed.

�� The speed The speed depends only on the nature of the depends only on the nature of the 
mediummedium, not on amplitude, frequency etc of the , not on amplitude, frequency etc of the 
wave.wave.

v
tension F

mass per unit length µ

Animation
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Lecture 20, RecapLecture 20, Recap
�� Agenda: Agenda: Chapter 15, Finish, Chapter 16, Begin

�� Simple pendulumSimple pendulum

�� Physical pendulumPhysical pendulum

�� TorsionalTorsional pendulum pendulum 

� Energy
� Damping
� Resonance
� Chapter 16, Traveling Waves

Assignments:Assignments:

�� Problem Set 7 due Nov. 14, Tuesday 11:59 PMProblem Set 7 due Nov. 14, Tuesday 11:59 PM
�� Problem Set 8 due Nov. 21, Tuesday 11:59 PMProblem Set 8 due Nov. 21, Tuesday 11:59 PM

�� For Wednesday, Finish Chapter 16, Start Chapter 17For Wednesday, Finish Chapter 16, Start Chapter 17


