Physics 207 - Lecture 20

Physics 207, Lecture 20, Nov. 13

- Agenda: Chapter 15, Finish, Chapter 16, Begin * Simple pendulum
* Physical pendulum
* Torsional pendulum
* Energy
* Damping
* Resonance
* Chapter 16, Traveling Waves

Assignments:

- Problem Set 7 due Nov. 14, Tuesday 11:59 PM
- Problem Set 8 due Nov. 21, Tuesday 11:59 PM Ch. 16: 3, 18, 30, 40, 58, 59 (Honors) Ch. 17: 3, 15, 34, 38, 40
- For Wednesday, Finish Chapter 16, Start Chapter 17

Physics 207: Lecture 20, Pg 1

Energy of the Spring-Mass System

We know enough to discuss the mechanical energy of the oscillating mass on a spring.

Remember,

$$
\begin{aligned}
& x(t)=A \cos (\omega t+\phi) \\
& v(t)=-\omega A \sin (\omega t+\phi) \\
& a(t)=-\omega^{2} A \cos (\omega t+\phi)
\end{aligned}
$$

Kinetic energy is always

$$
\begin{aligned}
& \mathrm{K}=1 / 2 \mathrm{mv}^{2} \\
& \mathrm{~K}=1 / 2 \mathrm{~m}[-\omega \mathrm{A} \sin (\omega \mathrm{t}+\phi)]^{2}
\end{aligned}
$$

And the potential energy of a spring is,

$$
\begin{aligned}
& U=1 / 2 k x^{2} \\
& U=1 / 2 k[A \cos (\omega t+\phi)]^{2}
\end{aligned}
$$

Energy of the Spring-Mass System

Add to get $\mathrm{E}=\mathrm{K}+\mathrm{U}=$ constant.

$$
1 / 2 m(\omega A)^{2} \sin ^{2}(\omega t+\phi)+1 / 2 k(A \cos (\omega t+\phi))^{2}
$$

$$
\text { Recalling } \quad \omega=\sqrt{\frac{k}{m}} \Rightarrow \omega^{2}=\frac{k}{m}
$$

$$
\text { so, } E=1 / 2 k A^{2} \sin ^{2}(\omega t+\phi)+1 / 2 k A^{2} \cos ^{2}(\omega t+\phi)
$$

SHM So Far

- The most general solution is $x=\mathrm{A} \cos (\omega t+\phi)$ where $A=$ amplitude

$$
\omega=\text { (angular) frequency }
$$

$$
\phi=\text { phase constant }
$$

- For SHM without friction,

$$
=1 / 2 k A^{2}\left[\sin ^{2}(\omega t+\phi)+\cos ^{2}(\omega t+\phi)\right]
$$

$$
=1 / 2 k A^{2} \quad \text { with } \theta=\omega t+\phi
$$

* The frequency does not depend on the amplitude! * We will see that this is true of all simple harmonic motion!
- The oscillation occurs around the equilibrium point where the force is zero!
- Energy is a constant, it transfers between potential and kinetic.

The Simple Pendulum

- A pendulum is made by suspending a mass m at the end of a string of length L. Find the frequency of oscillation for small displacements.
$\Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{c}}=\mathrm{T}-\mathrm{mg} \cos (\theta)=\mathrm{mv}^{2} / \mathrm{L}$
$\Sigma F_{x}=m a_{x}=-m g \sin (\theta)$
If θ small then $x \cong L \theta$ and $\sin (\theta) \cong \theta$

$$
\mathrm{dx} / \mathrm{dt}=\mathrm{L} \mathrm{~d} \theta / \mathrm{dt}
$$

$$
a_{x}=d^{2} x / d t^{2}=L d^{2} \theta / d t^{2}
$$

so $a_{x}=-g \theta=L d^{2} \theta / d t^{2} \rightarrow L d^{2} \theta / d t^{2}-g \theta=0$
and $\theta=\theta_{0} \cos (\omega t+\phi)$ or $\theta=\theta_{0} \sin (\omega t+\phi)$ with $\omega=(\mathrm{g} / \mathrm{L})^{1 / 2}$

Lecture 20, Exercise 1 Simple Harmonic Motion

- You are sitting on a swing. A friend gives you a small push and you start swinging back \& forth with period T_{1}.
- Suppose you were standing on the swing rather than sitting. When given a small push you start swinging back \& forth with period T_{2}.

Which of the following is true recalling that $\omega=(\mathrm{g} / \mathrm{L})^{1 / 2}$
(A) $T_{1}=T_{2}$
(B) $T_{1}>T_{2}$
(C) $T_{1}<T_{2}$

Physics 207 - Lecture 20

The Rod Pendulum

- A pendulum is made by suspending a thin rod of length L and mass M at one end. Find the frequency of oscillation for small displacements (i.e., $\theta \cong \sin \theta$).
$\Sigma \tau_{\mathrm{z}}=|\alpha=-|\mathbf{r} \times \mathbf{F}|=(L / 2) m g \sin (\theta)$
(no torque from T)
$-\left[\mathrm{mL}^{2} / 12+\mathrm{m}(\mathrm{L} / 2)^{2}\right] \alpha \cong \mathrm{L} / 2 \mathrm{mg} \theta$
$-1 / 3 L^{2} \theta / d t^{2}=1 / 2 g \theta$

The rest is for homework...

Physics 207: Lecture 20, Pg 7

General Physical Pendulum

- Suppose we have some arbitrarily shaped solid of mass M hung on a fixed axis, that we know where the CM is located and what the moment of inertia I about the axis is.
- The torque about the rotation (z) axis for small θ is $(\sin \theta \cong \theta)$

$$
\tau=-M g R \sin \theta \cong-M g R \theta \rightarrow \underbrace{-M g R \theta}_{\tau}=I \underbrace{\frac{d^{2} \theta}{d t^{2}}}_{\alpha}
$$

$$
\Rightarrow \quad \frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta \quad \text { where } \omega=\sqrt{\frac{M g R}{I}}
$$

$$
\Rightarrow \theta=\theta_{0} \cos (\omega t+\phi)
$$

Torsion Pendulum

- Consider an object suspended by a wire attached at its CM. The wire defines the rotation axis, and the moment of inertia I about this axis is known.
- The wire acts like a "rotational spring".
* When the object is rotated, the wire is twisted. This produces a torque that opposes the rotation.
$\%$ In analogy with a spring, the torque produced is proportional to the displacement: $\tau=-\kappa \theta$ where κ is the torsional spring constant
$\star \omega=(\kappa / I)^{1 / 2}$

Torsional spring constant of DNA

- Session Y15: Biosensors and Hybrid Biodevices
- 11:15 AM-2:03 PM, Friday, March 25, 2005 LACC - 405
- Abstract: Y15.00010 : Optical measurement of DNA torsional modulus under various stretching forces
- Jaehyuck Choi. Kai Zhao Y--H. Lo Department of Electrical and Computer Jolla Californiog2093-0407 We have measured tha torsional spring modulus of a double stranded-DNA by applying an external torque around the axis of a vertically stretched DNA molecule. We observed that the torsional modulus of the DNA increases with stretching force. This result supports the hypothesis that an applied stretching force may raise the intrinsic torsional modulus of
ds-DNA via elastic coupling between twisting and stretching. This further verifies that the torsional modulus value ($\mathrm{C}=46.5+/-10 \mathrm{pN}=\mathrm{nm}$) of a ds ta - bNA investigated under Brownian torque (no external force and torque) could
the pure intrinsic value without contribution from other effects such as the pure intrinsic value without contribution from
stretching, bending, or buckling of DNA chains.

Lecture 20, Exercise 2
 Period

- All of the following torsional pendulum bobs have the same mass and $\omega=(\kappa /)^{1 / 2}$
- Which pendulum rotates the slowest, i.e. has the longest period? (The wires are identical, κ is constant)

Reviewing Simple Harmonic Oscillators

- Spring-mass system

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=-\omega^{2} x \text { where } \omega=\sqrt{\frac{k}{m}} \\
& \Rightarrow x(t)=A \cos (\omega t+\phi)
\end{aligned}
$$

- Pendulums $\frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta$

$$
\Rightarrow \theta=\theta_{0} \cos (\omega t+\phi)
$$

Physics 207 - Lecture 20

SHM and quadratic potentials

- SHM will occur whenever the potential is quadratic.
- For small oscillations this will be true:
- For example, the potential between H atoms in an H_{2} molecule looks something like this:

What about Friction?

- Friction causes the oscillations to get smaller over time
- This is known as DAMPING.
- As a model, we assume that the force due to friction is proportional to the velocity, $\mathrm{F}_{\text {friction }}=-\mathrm{bv}$.

ωt

What about Friction?

$$
-k x-b \frac{d x}{d t}=m \frac{d^{2} x}{d t^{2}} \quad \square \frac{d^{2} x}{d t^{2}}+\frac{b}{m} \frac{d x}{d t}+\frac{k}{m} x=0
$$

We can guess at a new solution.

$$
x=\mathrm{A} \exp \left(-\frac{b t}{2 m}\right) \cos (\omega t+\phi) \text { and now } \omega_{0}^{2} \equiv k / m
$$

With,

$$
\omega=\sqrt{\frac{k}{m}-\left(\frac{b}{2 m}\right)^{2}}=\sqrt{\omega_{o}^{2}-\left(\frac{b}{2 m}\right)^{2}}
$$

$$
x(t)=\mathrm{A} \exp \left(-\frac{b t}{2 m}\right) \cos (\omega t+\phi) \quad \text { if } \quad \omega_{o}>b / 2 m
$$

What does this function look like?

Physics 207 - Lecture 20

Dramatic example of resonance

- In 1940, a steady wind set up a torsional vibration in the Tacoma Narrows Bridge

Physics 207 - Lecture 20

Lecture 20, Exercise 3 Resonant Motion

- Consider the following set of pendulums all attached to the same string

If I start bob D swinging which of the others will have the largest swing amplitude?
(A)
(B)
(C)

Physics 207: Lecture 20, Pg 28

What is a wave?

- A definition of a wave:
* A wave is a traveling disturbance that transports energy but not matter.
- Examples:
* Sound waves (air moves back \& forth)
* Stadium waves (people move up \& down)
* Water waves (water moves up \& down)
* Light waves (an oscillating electromagnetic field)

Physics 207 - Lecture 20

Wave Properties

- Wavelength: The distance λ between identical points on the wave.
- Amplitude: The maximum displacement A of a point on the wave.

Animation

Physics 207: Lecture 20, Pg 32

Lecture 20, Exercise 4 Wave Motion

- The speed of sound in air is a bit over $300 \mathrm{~m} / \mathrm{s}$, and the speed of light in air is about $300,000,000 \mathrm{~m} / \mathrm{s}$.
- Suppose we make a sound wave and a light wave that both have a wavelength of 3 meters.
What is the ratio of the frequency of the light wave to that of the sound wave? (Recall $v=\lambda / T=\lambda f)$
(A) About 1,000,000
(B) About $0.000,001$
(C) About 1000

Physics 207: Lecture 20, Pg 34

Lecture 20, Exercise 5

 Wave Motion- A harmonic wave moving in the positive x direction can be described by the equation
(The wave varies in space and time.)
- $v=\lambda / T=\lambda f=(\lambda / 2 \pi)(2 \pi f)=\omega / k$ and, by definition, $\omega>0$
- $y(x, t)=A \cos ((2 \pi / \lambda) x-\omega t)=A \cos (k x-\omega t)$
- Which of the following equation describes a harmonic wave moving in the negative x direction ?
(A) $y(x, t)=A \sin (k x-\omega t)$
(B) $y(x, t)=A \cos (k x+\omega t)$
(C) $y(x, t)=A \cos (-k x+\omega t)$

Physics 207 - Lecture 20

Waves on a string

- What determines the speed of a wave ?
- Consider a pulse propagating along a string:
\qquad
- "Snap" a rope to see such a pulse
- How can you make it go faster ?

Animation
\qquad
Physics 207: Lecture 20, Pa 38

Suppose:

- The tension in the string is F
- The mass per unit length of the string is $\mu(\mathrm{kg} / \mathrm{m})$
- The shape of the string at the pulse's maximum is circular and has radius R

Lecture 20, Recap

- Agenda: Chapter 15, Finish, Chapter 16, Begin
* Simple pendulum
* Physical pendulum
* Torsional pendulum
* Energy
* Damping
* Resonance
* Chapter 16, Traveling Waves

Assignments:

- Problem Set 7 due Nov. 14, Tuesday 11:59 PM
- Problem Set 8 due Nov. 21, Tuesday 11:59 PM
- For Wednesday, Finish Chapter 16, Start Chapter 17

