Physics 207 - Lecture 23

Physics 207, Lecture 23, Nov. 22

- Agenda: Catch up
- Chapter 18, Superposition and Standing Waves
* Superposition
* Interference
* Standing Waves
* Nodes, Anti-nodes

Assignments:

- Problem Set 9 due Tuesday, Dec. 5, 11:59 PM

Ch. 18: $3,18,30,40,58$

- Mid-term 3, Tuesday, Nov. 28, Chapters 14-17, 90 minutes,

7:15-8:45 PM in rooms 105 and 113 Psychology

- Monday is a review for Tuesday's mid-term

Superposition \& Interference

 (How do waves add)- Consider two harmonic waves A and B meeting.
* Same frequency and amplitudes, but phases differ (ϕ).
- The displacement versus time for each is shown below:

What does $C(t)=A(t)+B(t)$ look like ?
Wave Superposition
Physics 207: Lecture 23, Pg 2

Superposition \& Interference

- Consider A + B,
$A(x, t)=A \cos (k x-\omega t) \quad B(x, t)=A \cos (k x-\omega t+\phi)$
* We can show: $C=2 A \cos (\phi / 2) \cos (k x-\omega t+\phi / 2)$
* Using half-angle identities......see text 18.1

$C(k x-\omega t) \int_{\text {Phase shift }=\phi / 2}$
Physics 207: Lecture 23, Pg 3

Lecture 23, Exercise 1 Superposition

- Two continuous harmonic waves with the same frequency and amplitude but, at a certain time, have a phase difference of 170° are superimposed. Which of the follow ing best represents the resultant wave at this moment?

Original wave (the other has a different phase)
(A) 心 M

(D)
(E)

Superposition \& Interference

- We have just seen that when waves combine (superimpose) the result can either be bigger or smaller than the original waves.
- Waves can add "constructively" or "destructively" depending on the relative sign of each wave.

- In general, both may happen Pulse Superposition

Physics 207: Lecture 23, Pg 5

Superposition \& Interference

- Consider two harmonic waves A and B meet at $t=0$. * They have same amplitudes and phase, but

$$
\omega_{2}=1.15 \times \omega_{1} . \quad \text { Beat Superposition }
$$

- The displacement versus time for each is shown below:

$$
C(t)=A(t)+B(t)
$$

CONSTRUCTIVE INTERFERENCE

Physics 207: Lecture 23, Pg 6

Physics 207 - Lecture 23

Aside: Why superposition works

- The equation governing waves (Chapter 16, "the Wave Equation") is linear. For linear equations, if we have two (or more) separate solutions, f_{1} and f_{2}, then $B f_{1}+C f_{2}$ is also a solution .
- For linear equations, if we have two (or more) separate solutions, f_{1} and f_{2}, then $B f_{1}+C f_{2}$ is also a solution
- This is called the "Superposition Principle"
- You have already seen this in the case of simple harmonic motion:

$$
\begin{gathered}
\frac{d^{2} x}{d t^{2}}=-\omega^{2} x \quad \text { linear in } x! \\
x(t)=B \sin (\omega t)+C \cos (\omega t)
\end{gathered}
$$

Physics 207: Lecture 23, Pg 7

Lecture 23, Exercise 2

Superposition

- The traces below show beats that occur when two different pairs of waves are added (the time axes are the same).
- For which of the two is the difference in frequency of the original waves greater?

pair 1

pair 2
A. Pair 1
B. Pair 2
C. The frequency difference was the samefor both pairs of waves.
D. Need more information.

Physics 207: Lecture 23, Pg 9

Interference of Waves

- 2D Surface Waves on Water

In phase sources separated by a distance d

Interference of Sound

Sound waves interfere, just like transverse waves do. The resulting wave (displacement, pressure) is the sum of the two (or more) waves you started with.

$$
\begin{aligned}
\Delta L & =\left|L_{1}-L_{2}\right| \\
\phi & =2 \pi \frac{\Delta L}{\lambda}
\end{aligned}
$$

Constructive interference: $\quad \phi=n(2 \pi)$

$$
\frac{\Delta L}{\lambda}=0,1,2,3, \ldots
$$

$$
\text { Destructive interference: } \quad \phi=(2 n+1) \pi
$$

$$
\frac{\Delta L}{\lambda}=\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \ldots
$$

Physics 207 - Lecture 23

Lecture 23, Example
 Interference

- A speaker sits on a pedestal 2 m tall and emits a sine wave at 343 Hz (the speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$, so $\lambda=1 \mathrm{~m}$). Only the direct sound wave and that which reflects off the ground at a position half-way between the speaker and the person (also 2 m tall) makes it to the persons ear.
- How close to the speaker can the person stand (A to D) so they hear a maximum sound intensity assuming there is no phase change at the ground (this is a bad assumption)?

The distances $A D$ and $B C D$ have equal transit times so the sound waves will be in phase. The only need is for $A B=1$ wavelength

Lecture 23, Example Interference

- The geometry dictates everything else.
$A B=\lambda \quad A D=B C+C D=B C+\left(h^{2}+(d / 2)^{2}\right)^{1 / 2}=d$
$A C=A B+B C=\lambda+B C=\left(h^{2}+d / 2^{2}\right)^{1 / 2}$
Eliminating $B C$ gives $\quad \lambda+d=2\left(h^{2}+d^{2} / 4\right)^{1 / 2}$
$\lambda+2 \lambda d+d^{2}=4 h^{2}+d^{2}$
$1+2 d=4 h^{2} / \lambda \rightarrow d=2 h^{2} / \lambda-1 / 2$

Because the ground is more dense than air there will be a phase change of π and so we really should set $A B$ to $\lambda / 2$ or 0.5 m .

Physics 207: Lecture 23, Pg 15
Physics 207: Lecture 23. Pg 16

Main point

- Path differences will give phase differences.
- This will lead to a superposition with constructive or destructive interference.
- If two waves start out "in-phase" (at the same time) and then travel different distances before they are superimposed then the path difference, ΔL, corresponds to a phase difference with:

$$
\begin{aligned}
& \Delta L=\frac{\phi}{2 \pi} \lambda=2 n \frac{\lambda}{2} \text { (constructive) } \\
& \Delta L=\frac{\phi}{2 \pi} \lambda=(2 n+1) \frac{\lambda}{2} \text { (destructive) }
\end{aligned}
$$

Standing Waves: A special kind of superposition

- Consider A + B, same λ and ω but traveling to the left and right. $A(x, t)=A \cos (k x-\omega t) \quad B(x, t)=A \cos (k x+\omega t+\pi)$
Now $\underline{C}(\mathrm{x}, \mathrm{t})=2 \mathrm{~A} \cos (2 \pi x \lambda) \cos (\omega \mathrm{t})$ and there is no net energy flow. If $\phi=\pi / 2$ then
$\mathrm{C}^{\prime}(x, t)=2 A \sin (2 \pi x / \lambda) \sin (\omega t)$
These are "standing waves".
- This describes motion on string (length L)
$\mathrm{C}(0, \mathrm{t})=\mathrm{C}(\mathrm{L}, \mathrm{t})=0$ if
$L=n \lambda / 2 \rightarrow \lambda=2 L / n$
- Or more generally

Physics 207: Lecture 23, Pg 17

A combination wave composed of the 1 st harmonic and the third harmonic.

Physics 207 - Lecture 23

| Music |
| :--- | :--- |
| - What makes instruments unique is the combination |
| of harmonics produced by the different instruments. |
| - Futues produce primarily the 1st harmonic |
| - They have a very pure tone |
| - Oboes produce a broad range of harmonics and |
| sound very different |

Musical Instruments

- Three ways to make sound
- Vibrate a string
- Vibrate an air column
- Vibrate a membrane

Physics 207: Lecture 23, Pg 22

Vibrating Strings

- Violin, viola, cello, string bass
- Guitars
- Ukuleles
- Mandolins
- Banjos
- All vibrate a structure to "amplify" the sound

Vibrating Air Columns

- Pipe Organs
- Brass Instruments
- Woodwinds
- Whistles

Vibrating Membranes

- Percussion Instruments
- Drums
- Bongos

Physics 207 - Lecture 23

Organ Pipe Example A 0.9 m organ pipe (open at both ends) is measured to have it's first harmonic (i.e., its fundamental) at a frequency of 382 Hz . What is the speed of sound (refers to energy transfer) in the pipe? $\begin{aligned} & f=382 \mathrm{~Hz} \text { and } f \lambda=v \text { with } \lambda=2 \mathrm{~L} / \mathrm{n}(\mathrm{n}=1) \\ & v=382 \times 2(0.9) \mathrm{m} \rightarrow v=687 \mathrm{~m} / \mathrm{s} \end{aligned}$

Lecture 23, Exercise 3 Standing Waves

- What happens to the fundamental frequency of a pipe, if the air $(\mathrm{v}=300 \mathrm{~m} / \mathrm{s})$ is replaced by helium $(\mathrm{v}=900 \mathrm{~m} / \mathrm{s})$?
Recall: $f \lambda=v$
$\begin{array}{lll}\text { (A) Increases } & \text { (B) Same } & \text { (C) Decreases }\end{array}$

Recap, Lecture 23

- Agenda: Catch up
- Chapter 18, Superposition and Standing Waves
* Superposition
* Interference
* Standing Waves
* Nodes, Anti-nodes

Assignments:

- Problem Set 9 due Tuesday, Dec. 5, 11:59 PM

Ch. 18: 9, 17, 21, 39, 53a (tentative)

- Mid-term 3, Tuesday, Nov. 28, Chapters 14-17, 90 minutes, 7:15-8:45 PM in rooms 105 and 113 Psychology
- Monday is a review session for Tuesday's mid-term
- Have a good Thanksgiving holiday and see you Monday!

