Physics 207 - Lecture 24

Physics 207, Lecture 24, Nov. 27

- Agenda: Mid-Term 3 Review
* Elastic Properties of Matter, Moduli
* Pressure, Work, Archimedes' Principle, Fluid flow, Bernoulli
* Oscillatory motion, Linear oscillator, Pendulums
* Energy, Damping, Resonance
* Transverse Waves, Pulses, Reflection, Transmission, Power
* Longitudinal Waves (Sound), Plane waves, Spherical waves
* Loudness, Doppler effect

Assignments:

- Problem Set 9 due Tuesday, Dec. 5, 11:59 PM

Ch. 18: 9, 17, 21, 39, 53a, Ch. 19: 2, 12, 15, 31, 43, 57

- Mid-term 3, Tuesday, Nov. 28, Chapters 14-17, 90 minutes, 7:15-8:45 PM in rooms 105 and 113 Psychology. McBurney students will go to room 5130 Chamberlin (Grades on Monday)
- Wednesday, Chapter 19 (Temperature, then Heat \& Thermodynamics)

Physics 207: Lecture 24, Pg 1

Example: Statics with Young's Modulus

- A small person is riding a unicycle and is halfway between two posts 200 m apart. The guide wire was originally 200 m long, weighs 1.0 kg and has cross sectional area of $2 \mathrm{~cm}^{2}$. Under the weight of the unicycle it sags down 1.0 m at the center and there is a tension of 5000 Newtons along the wire.

(a) What is the Young's Modulus of the wire (to two significant figures)? (b) How long does it take a transverse wave (a pulse) to propagate from the support to the unicycle (Treat wire as a simple string)?
(c) If the pulse is now said to be a perfectly sinusoidal wave and has a frequency of 100 Hz , what is the angular frequency?
(d) At what transverse amplitude of the wave, in the vertical direction, will the wire's maximum acceleration just reach $10 \mathrm{~m} / \mathrm{s}$

Physics 207: Lecture 24, Pg 3

Example: Statics with Young's Modulus

- A small person is riding a unicycle and is halfway between two posts 200 m apart. The guide wire was originally 200 m long, weighs 1.0 kg and has cross sectional area of $2 \mathrm{~cm}^{2}$. Under the weight of the unicycle it sags down 1.0 m at the center and there is a tension of 5000 Newtons along the wire.

(a) What is the Young's Modulus of the wire (to two significant figures)?

$$
\Delta \mathrm{L}=\left[\left(100^{2}+1.0^{2}\right)^{1 / 2}-100\right] \mathrm{m} \cong 5 \times 10^{-3} \mathrm{~m}
$$

$$
\mathrm{Y}=\frac{F / A}{\Delta L / L_{0}}=\frac{5000 \mathrm{~N} / 2 \times 10^{-4} \mathrm{~m}^{2}}{5.0 \times 10^{-5}}=5.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}
$$

Physics 207: Lecture 24, Pg 4

Example: Statics with Young's Modulus

- A small person is riding a unicycle and is halfway between two posts 200 m apart. The guide wire was originally 200 m long, weighs 1.0 kg and has cross sectional area of $2 \mathrm{~cm}^{2}$. Under the weight of the unicycle it sags down 1.0 m at the center and there is a tension of 5000 Newtons along the wire.

(b) How long does it take a transverse wave to propagate from the support to the unicycle (Note: treat wire as a simple string)?
time $=$ distance $/$ velocity $=100 \mathrm{~m} /(\mathrm{T} / \mu)^{1 / 2}=100 /(5000 /(1.0 / 200))^{1 / 2} \mathrm{~s}$ $\mathrm{t}=100 /\left(1 \times 10^{6}\right)^{1 / 2} \mathrm{sec}=100 / 1 \times 10^{3} \mathrm{sec}=0.10$ seconds

Notice $T / \mu=5000 \times 200=10^{6} \mathrm{~m}^{2} / \mathrm{s}^{2} \& \mathrm{Y} / \mathrm{\rho}=5.0 \times 10^{11} \times\left(200 \times 2 \times 10^{-6}\right)=2 \times 10^{8} \mathrm{~m}^{2} / \mathrm{s}^{2}$

Math Summary

- The formula describes a harmonic wave of amplitude A moving in the $+x$ direction.

- Each point on the wave oscillates in the y direction with simple harmonic motion of angular frequency ω.
- The wavelength of the wave is $\lambda=\frac{2 \pi}{k}$
- The speed of the wave is $v=\frac{\omega}{k}$
- The quantity k is often called "wave number".

Physics 207 - Lecture 24

(c) If the pulse is said to be a perfectly sinusonidal wave and has a frequencyof 100 Hz , what is the angular frequecy? $\rightarrow 628 \mathrm{rad} / \mathrm{s}$
(d) At what transverse amplitude of the wave, in the vertical direction, will the wire's maximum acceleration just reach $10 \mathrm{~m} / \mathrm{s}^{2}$

$$
\begin{aligned}
& a(t)=-\omega^{2} A \cos (\omega t+\phi) \\
& a_{\max }=\omega^{2} A=(100 \times 2 \pi)^{2} A=10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Fluids: Pascal's Principle

- Pressure depends on depth: $\Delta p=\rho g \Delta y$
- Pascal's Principle addresses how a change in pressure is transmitted through a fluid.

Any change in the pressure applied to an enclosed fluid is transmitted to every portion of the fluid and to the walls of the containing vessel.
$d W=F \cdot d x$
Here $d W=F / A(A d x)$ or $W=P d V$
$F_{1} / A_{1} A_{1} d_{1}=P A_{1} d_{1}=W$
$F_{2} / A_{2} A_{2} d_{2}=P A_{2} d_{2}=W$

$$
\text { so } \mathrm{A}_{1} \mathrm{~d}_{1}=\mathrm{A}_{2} \mathrm{~d}_{2}
$$

Physics 207 - Lecture 24

Lecture 24, Exercise Physical Pendulum

- A pendulum is made by hanging a thin hoola-hoop of diameter D on a small nail. What is the angular frequency of oscillation of the hoop for small displacements?
($I_{C M}=m R^{2}$ for a hoop)
$\Rightarrow \frac{d^{2} \theta}{d t^{2}}=-\omega^{2} \theta \quad$ where $\omega=\sqrt{\frac{M g R}{\mathrm{I}}}=\sqrt{\frac{\tau}{\mathrm{I}}} \quad$ pivot (nail)
(A) $\omega=\sqrt{\frac{g}{D}}$
(B) $\omega=\sqrt{\frac{2 g}{D}}$
(C) $\omega=\sqrt{\frac{g}{2 D}}$

Physics 207.

Sample Problem (Another physical pendulum)

- PROBLEM: A 30 kg child is sitting with his center of mass 2 m from the frictionless pivot of a massless see-saw as shown. The see-saw is initially horizontal and, at 3 m on the other side, there is a massless Hooke's Law spring (constant $120 \mathrm{~N} / \mathrm{m}$) attached so that it sits perfectly vertical (but slightly stretched). Gravity acts in the downward direction with $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}$.

- Assuming everything is static and in perfect equilibrium. (a) What force, F, is provided by the spring?
$\Sigma \tau=0=m_{b} g(2 m)-F(3 m) \rightarrow F=600 \mathrm{~N} / 3=200 \mathrm{~N}$
- (b) Now the child briefly bounces the see-saw (with a small amplitude oscillation) and then moves with the seesaw. What is the angular frequency of the child?

Sample Problem (Another physical pendulum)

- PROBLEM: A 30 kg child is sitting with his center of mass 2 m from the frictionless pivot of a massless see-saw as shown. The see-saw is initially horizontal and, at 3 m on the other side, there is a massless Hooke's Law spring (constant $120 \mathrm{~N} / \mathrm{m}$) attached so that it sits perfectly vertical (but slightly stretched).

- $\Sigma \tau=0=m_{b} g(2 m)-F(3 m) \rightarrow F=600 N / 3=200 N$
- (b) Now the child briefly bounces the see-saw (with a small amplitude oscillation) and then moves with the see-saw. What is the angular frequency of the child?
$I \alpha=I d^{2} \theta / d t^{2}=-r k \Delta x \cong-r k r \theta \rightarrow \omega=(\tau / I)^{1 / 2}=\left(r^{2} k / \mathrm{mr}_{\mathrm{b}}{ }^{2}\right)^{1 / 2}$ $\omega=(9 \times 120 / 30 \times 4)^{1 / 2}=(4 / 4)^{1 / 2}=3 \mathrm{rad} / \mathrm{s}$

Physics 207: Lecture 24, Pg 17

SHM: Velocity and Acceleration

Position: $\quad x(t)=\mathrm{A} \cos (\omega t+\phi)$
Velocity: $\quad v(t)=-\omega \mathrm{A} \sin (\omega t+\phi)$
Acceleration: $a(t)=-\omega^{2} \mathrm{~A} \cos (\omega t+\phi)$
by taking derivatives, since:

$v(t)=\frac{d x(t)}{d t}$
$a(t)=\frac{d v(t)}{d t}$

Physics 207 - Lecture 24

Lecture 24, Exercise Simple Harmonic Motion

- A mass oscillates up \& down on a spring. It's position as a function of time is shown below. At which of the points shown does the mass have positive velocity and negative acceleration ?
Remember: velocity is slope and acceleration is the curvature

Example

- A mass $m=2 \mathrm{~kg}$ on a spring oscillates with amplitude
$A=10 \mathrm{~cm}$. At $t=0$ its speed is at a maximum, and is $v=+2$ m / s
* What is the angular frequency of oscillation ω ?
\star What is the spring constant k ?
General relationships $E=K+U=$ constant, $\omega=(\mathrm{k} / \mathrm{m})^{1 / 2}$ So at maximum speed $\mathrm{U}=0$ and $1 / 2 \mathrm{mv}^{2}=\mathrm{E}=1 / 2 \mathrm{kA}{ }^{2}$ thus $k=m v^{2} / A^{2}=2 \times(2)^{2} /(0.1)^{2}=800 \mathrm{~N} / \mathrm{m}, \omega=20 \mathrm{rad} / \mathrm{sec}$

Lecture 24, Example Initial Conditions

- A mass hanging from a vertical spring is lifted a distance d above equilibrium and released at $t=0$. Which of the following describe its velocity and acceleration as a function of time (upwards is positive y direction):
(A) $v(t)=-v_{\max } \sin (\omega t)$
$a(t)=-a_{\max } \cos (\omega t)$
(B) $v(t)=v_{\max } \sin (\omega t) \quad a(t)=a_{\max } \cos (\omega t)$

(both $v_{\max }$ and $a_{\max }$ are positive numbers)
Physics 207: Lecture 24. Pg 21

Energy of the Spring-Mass System

We know enough to discuss the mechanical energy of the oscillating mass on a spring.

$$
\text { Remember, } \quad \begin{aligned}
& x(t)=\mathrm{A} \cos (\omega t+\phi) \\
& v(t)=-\omega \mathrm{A} \sin (\omega t+\phi) \\
& a(t)=-\omega^{2} A \cos (\omega t+\phi)
\end{aligned}
$$

Kinetic energy is always

$$
\begin{aligned}
& \mathrm{K}=1 / 2 \mathrm{mv}^{2} \\
& \mathrm{~K}=1 / 2 \mathrm{~m}[-\omega \mathrm{A} \sin (\omega t+\phi)]^{2}
\end{aligned}
$$

And the potential energy of a spring is,

$$
\begin{aligned}
& U=1 / 2 k x^{2} \\
& U=1 / 2 k[A \cos (\omega t+\phi)]^{2}
\end{aligned}
$$

Physics 207 - Lecture 24

What about Friction?

$$
-k x-b \frac{d x}{d t}=m \frac{d^{2} x}{d t^{2}} \quad \square \frac{d^{2} x}{d t^{2}}+\frac{b}{m} \frac{d x}{d t}+\frac{k}{m} x=0
$$

We can guess at a new solution.
$x=\mathrm{A} \exp \left(-\frac{b t}{2 m}\right) \cos (\omega t+\phi)$ and now $\omega_{0}{ }^{2} \equiv k / m$

> With,

$$
\omega=\sqrt{\frac{k}{m}-\left(\frac{b}{2 m}\right)^{2}}=\sqrt{\omega_{o}^{2}-\left(\frac{b}{2 m}\right)^{2}}
$$

What about Friction?

$$
x(t)=\mathrm{A} \exp \left(-\frac{b t}{2 m}\right) \cos (\omega t+\phi) \quad \text { if } \quad \omega_{o}>b / 2 m
$$

What does this function look like?

And then traveling waves on a string

$$
\begin{aligned}
& \text { General harmonic waves } \\
& y(x, t)=A \cos (k x-\omega t) \\
& k=\frac{2 \pi}{\lambda} \quad \omega=2 \pi f=\frac{2 \pi}{T} \\
& v=\lambda f=\frac{\omega}{k}
\end{aligned}
$$

$$
\begin{aligned}
& \bullet \text { Waves on a string } \\
& v=\sqrt{\frac{F}{\mu} \longrightarrow \text { tension }} \\
& \bar{P}=\frac{1}{2} \mu v \omega^{2} A^{2} \\
& \frac{d \bar{E}}{d x}=\frac{1}{2} \mu \omega^{2} A^{2}
\end{aligned}
$$

Physics 207:Lecture 24, Pg 28

Sound Wave Properties

- Displacement: The maximum relative displacement s of a point on the wave. Displacement is longitudinal.
- Maximum displacement has minimum velocity

$$
\begin{aligned}
& \left.s(x, t)=s_{\max } \cos [(2 \pi / \lambda) x-\omega t)\right] \\
& \left.d s / d t=\omega s_{\max } \sin [(2 \pi / \lambda) x-\omega t)\right]
\end{aligned}
$$

Molecules "pile up" where the relative velocity is maximum
(i.e., $d s / d t=\omega s_{\text {max }}$)

Example, Energy transferred by a string

- Two strings are held at the same tension and driven with the same amplitude and frequency. The only difference is that one is thicker and has a mass per unit length that is four times larger than the thinner one Which string (and by how much) transfers the most power?
(Circle the correct answer.)
(A) the thicker string by a factor of 4 .
(B) the thicker string by a factor of 2.
(C) they transfer an equivalent amount of energy.
(D) the thinner string by a factor of 2 .
(E) the thinner string by a factor of 4 .
$\bar{P}_{\text {thick }}=\frac{1}{2} 4 \mu \mathrm{v} \omega^{2} A^{2}=\frac{1}{2} 4 \mu \sqrt{\frac{\mathrm{~T}}{4 \mu}} \omega^{2} A^{2}=2 \frac{1}{2} \mu \sqrt{\frac{\mathrm{~T}}{\mu}} \omega^{2} A^{2}=2 \bar{P}_{\text {thin }}$

Physics 207 - Lecture 24

Example, pulses on a string

- A transverse pulse is initially traveling to the right on a string that is joined, on the right, to a thicker string of higher mass per unit length. The tension remains constant T throughout. Part of the pulse is reflected and part transmitted. The drawing to the right shows the before (at top) and after (bottom) the pulse traverses the interface. There are however a few mistakes in the bottom drawing.
Identify two things wrong in the bottom sketch assuming the top

$$
\left.d s / d t=\omega s_{\max } \sin [(2 \pi / \lambda) x-\omega t)\right]
$$ sketch is correct.

Sound Wave, A longitudinal wave

- Displacement: The maximum relative displacement s of a point on the wave. Displacement is longitudinal.
- Maximum displacement has minimum velocity

$$
\left.s(x, t)=s_{\max } \cos [(2 \pi / \lambda) x-\omega t)\right]
$$

Molecules "pile up" where the relative velocity is maximum
(i.e., $d s / d t=\omega s_{\max }$)

Waves, Wavefronts, and Rays

- If the power output of a source is constant, the total power of any wave front is constant.
- The Intensity at any point depends on the type of wave.

$$
I=\frac{P_{\mathrm{av}}}{A}=\frac{P_{\mathrm{av}}}{\text { const }}
$$

Physics 207: Lecture 24, Pg 33

Intensity of sounds

- The amplitude of pressure wave depends on \star Frequency ω of harmonic sound wave
* Speed of sound v and density of medium ρ of medium * Displacement amplitude $s_{\max }$ of element of medium

$$
\Delta P_{\max }=\omega \mathrm{v} \rho s_{\max }
$$

- Intensity of a sound wave is

$$
\mathrm{I}=\frac{\Delta P_{\max }^{2}}{2 \rho \mathrm{v}}
$$

* Proportional to (amplitude) ${ }^{2}$
* This is a general result (not only for sound)
- Threshold of human hearing: $I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$

Doppler effect, moving sources/receivers

- If the source of sound is moving
* Toward the observer $\Rightarrow \lambda$ seems smaller $\%$ Away from observer $\Rightarrow \lambda$ seems larger

$$
f_{\text {observer }}=\left(\frac{\mathrm{v}}{\mathrm{v} \pm \mathrm{v}_{s}}\right) f_{\text {source }}
$$

- What is the sound level that corresponds to an intensity of $2.0 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2}$?
- $\beta=10 \log \left(2.0 \times 10^{-7} \mathrm{~W} / \mathrm{m}^{2} / 1.0 \times 10^{-12} \mathrm{~W} / \mathrm{m}^{2}\right)$
$=10 \log 2.0 \times 10^{5}=53 \mathrm{~dB}$
- Rule of thumb: An apparent "doubling" in the loudness is approximately equivalent to an increase of 10 dB .
- This factor is not linear with intensity
- If the observer is moving * Toward the source $\Rightarrow \lambda$ seems smaller * Away from source $\Rightarrow \lambda$ seems larger

$$
f_{\text {observer }}=\left(\frac{\mathrm{v} \pm \mathrm{v}_{0}}{\mathrm{v}}\right) f_{\text {source }}
$$

$f_{\text {observer }}=\left(\frac{\mathrm{v} \pm \mathrm{v}_{\mathrm{o}}}{\mathrm{v}}\right) f_{\text {source }}$

- If both are moving $f_{\text {observer }}=\left(\frac{\mathrm{v} \pm \mathrm{v}_{0}}{\mathrm{v} \mp \mathrm{v}_{\mathrm{s}}}\right) f_{\text {source }}$

Doppler Example Audio

- Examples: police car, train, etc. (Recall: v is vector) Doppler Example Visual

Physics 207 - Lecture 24

Physics 207, Lecture 24, Nov. 27

- Agenda: Mid-Term 3 Review * Elastic Properties of Matter, Moduli
* Pressure, Work, Archimedes' Principle, Fluid flow, Bernoulli
* Oscillatory motion, Linear oscillator, Pendulums
* Energy, Damping, Resonance
* Transverse Waves, Pulses, Reflection, Transmission, Power
* Longitudinal Waves (Sound), Plane waves, Spherical waves * Loudness, Doppler effect

Assignments:

- Problem Set 9 due Tuesday, Dec. 5, 11:59 PM

Ch. 18: $3,18, \underline{30}, 40,58 \mathrm{Ch} .19: 2,12,15,31,43,57$

- Mid-term 3, Tuesday, Nov. 28, Chapters 14-17, 90 minutes, 7:15-8:45 PM in rooms 105 and 113 Psychology. (Grades on Monday)
- Wednesday, Chapter 19 (Temperature, Heat and Thermodynamics)

