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Physics 207, Physics 207, Lecture 24, Nov. 27Lecture 24, Nov. 27

�� Agenda: Agenda: Mid-Term 3 Review
� Elastic Properties of Matter, Moduli
� Pressure, Work, Archimedes’ Principle, Fluid flow, Bernoulli 

�� Oscillatory motion, Linear oscillator, PendulumsOscillatory motion, Linear oscillator, Pendulums

�� Energy, Damping, Resonance
� Transverse Waves, Pulses, Reflection, Transmission, Power
� Longitudinal Waves (Sound), Plane waves, Spherical waves
� Loudness, Doppler effect

Assignments:Assignments:

�� Problem Set 9 due Tuesday, Dec. 5, 11:59 PMProblem Set 9 due Tuesday, Dec. 5, 11:59 PM

Ch. 18: Ch. 18: 9, 17, 21, 39, 53a, Ch. 19: 2, 12, 15, 31, 43, 57

�� MidMid--term 3, Tuesday, Nov. 28, Chapters 14term 3, Tuesday, Nov. 28, Chapters 14--17, 90 minutes, 7:1517, 90 minutes, 7:15--8:45 8:45 
PM  PM  in rooms 105 and 113 Psychology.  in rooms 105 and 113 Psychology.  McBurneyMcBurney students will go to students will go to 
room 5130 room 5130 ChamberlinChamberlin (Grades on Monday)(Grades on Monday)

�� Wednesday, Chapter 19 (Temperature, then Heat & Thermodynamics)Wednesday, Chapter 19 (Temperature, then Heat & Thermodynamics)
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� Young’s modulus: measures the 
resistance of a solid to a change in 
its length.

� Shear modulus: measures the 
resistance to motion of the planes of 
a solid sliding past each other.

� Bulk modulus: measures the 
resistance of solids or liquids to 
changes in their volume.

Some definitionsSome definitions
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Example: Example: StaticsStatics with Young’s Moduluswith Young’s Modulus

� A small person is riding a unicycle and is halfway between two posts 
200 m apart. The guide wire was originally 200 m long, weighs 1.0 kg 
and has cross sectional area of 2 cm2. Under the weight of the 
unicycle it sags down 1.0 m at the center and there is a tension of   
5000 Newtons along the wire. 

(a) What is the Young's Modulus of the wire (to two significant figures)? 
(b) How long does it take a transverse wave (a pulse) to propagate from 

the support to the unicycle (Treat wire as a simple string)? 
(c) If the pulse is now said to be a perfectly sinusoidal wave and has a 

frequency of 100 Hz, what is the angular frequency? 
(d) At what transverse amplitude of the wave, in the vertical direction, will 

the wire's maximum acceleration just reach 10 m/s
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Example: Example: StaticsStatics with Young’s Moduluswith Young’s Modulus

� A small person is riding a unicycle and is halfway between two posts 
200 m apart. The guide wire was originally 200 m long, weighs 1.0 kg 
and has cross sectional area of 2 cm2. Under the weight of the 
unicycle it sags down 1.0 m at the center and there is a tension of   
5000 Newtons along the wire. (Values changed from class). 

(a) What is the Young's Modulus of the wire (to two significant figures)?

∆L = [(1002 + 1.02)½ - 100 ] m ≅ 5 x 10-3 m
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Example: Example: StaticsStatics with Young’s Moduluswith Young’s Modulus

� A small person is riding a unicycle and is halfway between two posts 
200 m apart. The guide wire was originally 200 m long, weighs 1.0 kg 
and has cross sectional area of 2 cm2 . Under the weight of the 
unicycle it sags down 1.0 m at the center and there is a tension of 
5000 Newtons along the wire. 

(b) How long does it take a transverse wave to propagate from the
support to the unicycle (Note: treat wire as a simple string)? 

time = distance / velocity = 100 m / (T/ µ )½ = 100 / (5000 / (1.0/200))½ s
t =  100 / (1 x 106)½ sec =  100 / 1 x 103 sec =  0.10 seconds 

Notice T/ µ= 5000x200 = 106 m2/s2 & Y/ρ = 5.0 x 1011 x (200x2x10-6)=2x108 m2/s2
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Math SummaryMath Summary

� The formula                                    
describes a harmonic wave of
amplitude A moving in the 
+x direction. 

( ) ( )φω +−= tkxAtxy cos, y

x

λ
A

� Each point on the wave oscillates in the y direction with
simple harmonic motion of angular frequency ω.

λ π= 2
k

� The wavelength of the wave is

v
k

= ω
� The speed of the wave is

� The quantity k is often called “wave number”.
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Velocity and AccelerationVelocity and Acceleration

k
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m

0

Position: x(t) = A cos(ωt + φ)
Velocity: v(t) = -ωA sin(ωt + φ)
Acceleration: a(t) = -ω2A cos(ωt + φ)

by taking
derivatives,
since:

a t
dv t

dt
( )

( )=

v t
dx t

dt
( )

( )=
xmax = A
vmax = ωA
amax = ω2A
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Example: Example: StaticsStatics with Young’s Moduluswith Young’s Modulus

� A small person is riding a unicycle and is halfway between two posts 
200 m apart. The guide wire was originally 200 m long, weighs 1.0 kg 
and has cross sectional area of 2 mm. Under the weight of the 
unicycle it sags down 0.01 m at the center and there is a tension of 
5000 Newtons along the wire. 

(c) If the pulse is said to be a perfectly sinusonidal wave and has a 
frequencyof 100 Hz,  what is the angular frequecy?  � 628 rad/s

(d) At what transverse amplitude of the wave, in the vertical direction, will 
the wire's maximum acceleration just reach 10 m/s2

a(t) = -ω2A cos(ωt + φ)
amax = ω2A= (100 x 2π)2 A = 10 m/s2

Physics 207: Lecture 24, Pg 9

Pascal’s PrinciplePascal’s Principle

� Consider the system shown:
� A downward force F1 is applied 

to the piston of area A1.

� This force is transmitted through 
the liquid to create an upward 
force F2.

� Pascal’s Principle says that 
increased pressure from F1
(F1/A1) is transmitted 
throughout the liquid.
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� F2 > F1 :  Is there conservation of energy?
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Fluids: Pascal’s PrincipleFluids: Pascal’s Principle

� Pressure depends on depth:   ∆p = ρ g ∆y
� Pascal’s Principle addresses how a change in 

pressure is transmitted through a fluid.

Any change in the pressure applied to an enclosed fluid is 
transmitted to every portion of the fluid and to the walls of 
the containing vessel.
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dW = F • dx

Here  dW = F/A (A dx)  or   W = P dV

F1 /A1 A1d1 = P A1d1 = W

F2 /A2   A2d2  = P A2d2 = W

so A1d1  = A2d2 
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Archimedes’ PrincipleArchimedes’ Principle

� The buoyant force is equal to the weight of the liquid 
that is displaced.

� If the buoyant force is larger than the weight of the 
object, it will float; otherwise it will sink.

W2?W1

�Since the pressure at the bottom 
of the object is greater than that at 
the top of the object, the water 
exerts a net upward force, the 
buoyant force, on the object.
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� Flow obeys continuity equation

Volume flow rate    Q = A·v is constant along flow tube.

Follows from mass conservation if flow is incompressible.

A
1

A2

v1

v2

streamline

A1v1 = A2v2

Ideal FluidsIdeal Fluids
� Streamlines do not meet or cross

� Velocity vector is tangent to 
streamline

� Volume of fluid follows a tube of flow
bounded by streamlines

� Streamline density is proportional to 
velocity
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� Recall the standard work-energy relation W = ∆K = Kf - Ki

� Apply the principle to a section of flowing fluid with volume ∆V
and mass ∆m = ρ ∆V (here W is work done on fluid)

� Net work by pressure difference over ∆x (∆x1 = v1 ∆t)

Bernoulli Equation  � P1+ ½ ρ v1
2 + ρ g y1 = constant

y
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Conservation of Energy for Conservation of Energy for 
Ideal FluidIdeal Fluid
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Reviewing Simple Harmonic OscillatorsReviewing Simple Harmonic Oscillators
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x(t) = A cos( ωt + φ)

where

� Spring-mass system

� Pendula

� General physical pendulum

� Torsion pendulum
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Lecture 24, Lecture 24, ExerciseExercise
Physical PendulumPhysical Pendulum

� A pendulum is made by hanging a thin hoola-hoop of 
diameter D on a small nail.  What is the angular frequency 
of oscillation of the hoop for small displacements ? 
(ICM = mR2 for a hoop)

(A)

(B)

(C)

ω = g
D

ω = 2g
D

ω = g
2D

D

pivot (nail)
d

dt

2

2
2θ ω θ= −

II
τω == MgR

where
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Sample Problem (Another physical pendulum)Sample Problem (Another physical pendulum)

� PROBLEM: A 30 kg child is sitting with his center of mass 2 m
from the frictionless pivot of a massless see-saw as shown. The 
see-saw is initially horizontal and, at 3 m on the other side, there 
is a massless Hooke's Law spring (constant 120 N/m) attached 
so that it sits perfectly vertical (but slightly stretched). Gravity 
acts in the downward direction with  g = 10 m/s .   

� Assuming everything is static and in perfect equilibrium. 
(a) What force, F , is provided by the spring? 

Στ = 0 = mbg (2m) - F (3m)  � F = 600 N / 3 = 200 N
� (b)  Now the child briefly bounces the see-saw (with a 

small amplitude oscillation) and then moves with the see-
saw. What is the angular frequency of the child? 

F=k∆xFchild=mbg
Pivot
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Sample Problem (Another physical pendulum)Sample Problem (Another physical pendulum)

� PROBLEM: A 30 kg child is sitting with his center of mass 2 m
from the frictionless pivot of a massless see-saw as shown. The 
see-saw is initially horizontal and, at 3 m on the other side, there 
is a massless Hooke's Law spring (constant 120 N/m) attached 
so that it sits perfectly vertical (but slightly stretched). 

� Στ = 0 = mbg (2m) - F (3m)  � F = 600 N / 3 = 200 N
� (b)  Now the child briefly bounces the see-saw (with a small 

amplitude oscillation) and then moves with the see-saw. 
What is the angular frequency of the child? 

I α = I d2θ / dt2= -r k∆x ≅ -r k r θ  � ω = (τ/I)½ = (r2k / mrb
2)½

ω = (9 x 120 / 30 x 4 )½ = (4 / 4)½ = 3 rad / s

F=k∆x

∆x= r θ

Fchild=mbg
Pivot
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SHM:  Velocity and AccelerationSHM:  Velocity and Acceleration

k

x

m

0

Position: x(t) = A cos(ωt + φ)
Velocity: v(t) = -ωA sin(ωt + φ)
Acceleration: a(t) = -ω2A cos(ωt + φ)

by taking
derivatives,
since:

a t
dv t

dt
( )

( )=

v t
dx t

dt
( )

( )=
xmax = A
vmax = ωA
amax = ω2A
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Lecture 24, Lecture 24, Exercise  Exercise  Simple Harmonic Simple Harmonic 
MotionMotion

� A mass oscillates up & down on a spring.  It’s position as a 
function of time is shown below.  At which of the points 
shown does the mass have positive velocity and negative
acceleration ? 

Remember: velocity is slope and acceleration is the curvature

t

y(t)

(a)

(b)

(c)

Physics 207: Lecture 24, Pg 20

ExampleExample
� A mass m = 2 kg on a spring oscillates with amplitude 
A = 10 cm.  At t = 0 its speed is at a maximum, and is v=+2 

m/s

� What is the angular frequency of oscillation ω ?
� What is the spring constant k ?

General relationships  E = K + U = constant,  ω = (k/m)½

So at maximum speed U=0 and ½ mv2 = E = ½ kA2

thus k = mv2/A2 = 2 x (2) 2/(0.1)2 =  800 N/m, ω = 20 rad/sec 

k

x

m
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Lecture 24, Lecture 24, Example Example 
Initial ConditionsInitial Conditions

� A mass hanging from a vertical spring is lifted a 
distance d above equilibrium and released at t = 0.  
Which of the following describe its velocity and 
acceleration as a function of time (upwards is positive y 
direction):

k

m

y

0

d 

(A)  v(t) = - vmax sin( ωt ) a(t) = -amax cos( ωt ) 

(B)  v(t) = vmax sin( ωt ) a(t) =  amax cos( ωt )

(C)  v(t) =  vmax cos( ωt ) a(t) = -amax cos(ωt )

(both vmax and amax are positive numbers)

t = 0
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Lecture 24, Lecture 24, Exercise Exercise 
Initial ConditionsInitial Conditions

� A mass hanging from a vertical spring is lifted a 
distance d above equilibrium and released at t = 0.  
Which of the following describe its velocity and 
acceleration as a function of time (upwards is positive y 
direction):

k

m

y

0

d 

(A)  v(t) = - vmax sin( ωωωωt ) a(t) = -amax cos( ωωωωt ) 

(B)  v(t) = vmax sin( ωt ) a(t) =  amax cos( ωt )

(C)  v(t) =  vmax cos( ωt ) a(t) = -amax cos(ωt )

(both vmax and amax are positive numbers)

t = 0
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Energy of the SpringEnergy of the Spring --Mass SystemMass System

We know enough to discuss the mechanical energy of the 
oscillating mass on a spring.

Kinetic energy is always 
K = ½ mv2

K = ½ m [ -ωA sin( ωt + φ )]2

And the potential energy of a spring is,
U = ½ k x2

U = ½ k [ A cos (ωt + φ) ]2

x(t) =     A cos( ωt + φ )
v(t) = -ωA  sin( ωt + φ )
a(t) = -ω2A cos(ωt + φ)

Remember,
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What about Friction?What about Friction?

� Friction causes the oscillations to get smaller over time
� This is known as DAMPING.
� As a model, we assume that the force due to friction is 

proportional to the velocity, Ffriction = - b v .
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What about Friction?What about Friction?

2

2

dt

xd
m

dt

dx
bkx =−−

We can guess at a new solution. 
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k / m

Physics 207: Lecture 24, Pg 26

What about Friction?What about Friction?

What does this function look like?
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Lecture 24, Lecture 24, Exercise Exercise 
Resonant MotionResonant Motion

� Consider the following set of pendulums all attached to the 
same string

D

A

B

C

If I start bob D swinging which of the others will have the 
largest swing amplitude ?

(A) (B) (C)
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And then traveling waves on a string And then traveling waves on a string 

dE
dx

A= 1
2

2 2µω

P v A= 1
2

2 2µ ω

y

x

λ

A

v
F=
µ

� Waves on a string

( ) ( )tkxcosAt,xy ω−=

k = 2π
λ

v f
k

= =λ ω

ω π π= =2
2

f
T

� General harmonic waves

tension

mass / length
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Sound Wave PropertiesSound Wave Properties
� Displacement: The maximum relative displacement s of a 

point on the wave. Displacement is longitudinal.

� Maximum displacement has minimum velocity

)] )/2sin[(/

)] )/2cos[(),(

max

max

txsdtds

txstxs

ωλπω

ωλπ

−=

−=

λ
Wavelength

smax

s

x

Molecules “pile up” where the relative velocity is maximum 
(i.e., ds/dt = ω smax)

∆Pmax=ρvωsmax

Physics 207: Lecture 24, Pg 30

Example, Energy transferred by a stringExample, Energy transferred by a string

� Two strings are held at the same tension and driven with the same 
amplitude and frequency. The only difference is that one is thicker and 
has a mass per unit length that is four times larger than the thinner one. 
Which string (and by how much) transfers the most power? 
(Circle the correct answer.) 

(A) the thicker string by a factor of 4. 
(B) the thicker string by a factor of 2. 
(C) they transfer an equivalent amount of energy. 
(D) the thinner string by a factor of 2. 
(E) the thinner string by a factor of 4. 

thin
222222
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Example, pulses on a stringExample, pulses on a string

� A transverse pulse is initially traveling to the right on a string 
that is joined, on the right, to a thicker string of higher mass per 
unit length. The tension remains constant T throughout. Part of 
the pulse is reflected and part transmitted. The drawing to the 
right shows the before (at top) and after (bottom) the pulse 
traverses the interface. There are however a few mistakes in 
the bottom drawing. 

Identify two things wrong in the bottom sketch assuming the top 
sketch is correct. 

Original pulse (before interface)
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Sound Wave, A longitudinal waveSound Wave, A longitudinal wave

� Displacement: The maximum relative displacement s of a 
point on the wave. Displacement is longitudinal.

� Maximum displacement has minimum velocity

)] )/2sin[(/

)] )/2cos[(),(

max

max

txsdtds

txstxs

ωλπω

ωλπ

−=

−=

λ
Wavelength

smax

s

x

Molecules “pile up” where the relative velocity is maximum 
(i.e., ds/dt = ω smax)

∆Pmax=ρvωsmax
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Waves, Waves, WavefrontsWavefronts , and Rays, and Rays
� If the power output of a source is constant, the total 

power of any wave front is constant. 
� The Intensity at any point depends on the type of 

wave. 

2
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Intensity of sounds Intensity of sounds 
� The amplitude of pressure wave depends on

� Frequency ωωωω of harmonic sound wave
� Speed of sound v and density of medium ρ of medium 
� Displacement amplitude smax of element of medium

� Intensity of a sound wave is

� Proportional to (amplitude)2

� This is a general result (not only for sound)
� Threshold of human hearing: I0 = 10-12 W/m2

 v2
I

2
max

ρ
P∆=

maxmax v sP ρω=∆
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Sound Level, ExampleSound Level, Example

� What is the sound level that corresponds to an intensity of 
2.0 x 10-7 W/m2 ?

� β = 10 log (2.0 x 10-7 W/m2 / 1.0 x 10-12 W/m2) 
= 10 log 2.0 x 105  = 53 dB

� Rule of thumb: An apparent “doubling” in the loudness is 
approximately equivalent to an increase of 10 dB. 

� This factor is not linear with intensity








=
0

10 log  10 
I

Iβ
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Doppler effect, moving sources/receiversDoppler effect, moving sources/receivers
� If the source of sound is moving

� Toward the observer ⇒ λ seems smaller
� Away from observer  ⇒ λ seems larger

� If the observer is moving
� Toward the source ⇒ λ seems smaller
� Away from source  ⇒ λ seems larger

� If both are moving

� Examples: police car, train, etc.  (Recall: v is vector)

sourceobserver vv
v

ff
s









±
=

source
o

observer v
 vv

ff 






 ±=

source

s

o
observer  vv

 vv
ff 






 ±=
m Doppler Example Audio

Doppler Example Visual
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Physics 207, Physics 207, Lecture 24, Nov. 27Lecture 24, Nov. 27

�� Agenda: Agenda: Mid-Term 3 Review
� Elastic Properties of Matter, Moduli
� Pressure, Work, Archimedes’ Principle, Fluid flow, Bernoulli 

�� Oscillatory motion, Linear oscillator, PendulumsOscillatory motion, Linear oscillator, Pendulums

�� Energy, Damping, Resonance
� Transverse Waves, Pulses, Reflection, Transmission, Power
� Longitudinal Waves (Sound), Plane waves, Spherical waves
� Loudness, Doppler effect

Assignments:Assignments:
�� Problem Set 9 due Tuesday, Dec. 5, 11:59 PMProblem Set 9 due Tuesday, Dec. 5, 11:59 PM

Ch. 18: Ch. 18: 3, 18, 30, 40, 58 Ch. 19: 2, 12, 15, 31, 43, 57

�� MidMid--term 3, Tuesday, Nov. 28, Chapters 14term 3, Tuesday, Nov. 28, Chapters 14--17, 90 minutes, 7:1517, 90 minutes, 7:15--8:45 8:45 
PM  PM  in rooms 105 and 113 Psychology.   in rooms 105 and 113 Psychology.   (Grades on Monday)(Grades on Monday)

�� Wednesday, Chapter 19 (Temperature, Heat and Thermodynamics)Wednesday, Chapter 19 (Temperature, Heat and Thermodynamics)


