Physics 207 - Lecture 23

- MidTerm 3

Physics 207, Lecture 26, Dec. 4

- Exams will be returned at your next discussion section
- Regrades: Write down, on a separate sheet, what you want regraded and why.
Mean: 68
Median: 68
Std. Dev.: 15
Range: High 100
Low 32
Solution posted on http://my.wisc.edu Nominal curve (conservative):

$$
\begin{aligned}
& 88-100 \mathrm{~A} \\
& 70-87
\end{aligned}
$$

$70-87$ B or A / B
${ }_{35-41}$ marginal
25-34 D

Physics 207, Lecture 26, Dec. 4

* Heat and energy
\star Heat capacity
\star Energy transfer mechanisms: (thermal conduction, convection, radiation)
* $1^{\text {st }}$ Law of thermodynamics (i.e., You can't win)
* Work done by an ideal gas in a piston $>(d W=F d x=F / A \quad A d x=P d V$, Work-Energy $)$ (Looks new but it is really the same physics! Except for the definition of displacement (i.e., volume) * Introduction to thermodynamic cycles (Chapter 22) Assignments:
- Problem Set 9 due Tuesday, Dec. 5, 11:59 PM
- Problem Set 10 (Ch. 20 \& 21) due Tuesday, Dec. 12, 11:59 PM

Ch. 20: 13,22,38,43,50,68 Ch.21: 2,16,29,36,70

- Wednesday, Chapter 21 (Kinetic Theory of Gasses)

Specific Heat : examples

Substance	c in J/(kg-C)
aluminum	902
copper	385
iron	452
lead	128
human body	3500
water	4186
ice	2000

- You have equal masses of aluminum and copper at the same initial temperature. You add 1000 J of heat to each of them. Which one ends up at the higher final temperature (assuming no state change)?
(A) aluminum
(B) copper
(C) the same

Physics 207: Lecture 26, Pg 4

Latent Heat

- Latent heat: amount of internal energy needed to add or to remove from a substance to change the state of that substance.
* Phase change: T remains constant but internal energy changes
* Heat does not result in change in T (latent = "hidden")
$*$ e.g. : solid \Leftrightarrow liquid or liquid \Leftrightarrow gas (heat goes to breaking chemical bonds)
- $\mathrm{L}=\mathrm{Q} / \mathrm{m}$
* Heat per unit mass $[\mathrm{L}]=\mathrm{J} / \mathrm{kg}$
* $Q= \pm m L$
+ if heat needed (boiling) - if heat given up (freezing)
* L_{f} : Latent heat of fusion solid \Leftrightarrow liquid
* L_{v} : Latent heat of vaporization liquid \Leftrightarrow gas

Latent Heats of Fusion and Vaporization
Question: Can you identify the heat capacity?

Physics 207 - Lecture 23

Lecture 26: Exercise 1 Latent Heat

- You are heating water for cooking pasta. You notice "steam" (Q: Can you really see steam?) starting to escape between the lid and pot so you lift the lid to take a peek and both water and steam spew out.
- Equal amounts of steam and boiling water coat your hand. In the first case it is boiling water at 100 C .
In the second case it is steam at 100 C .
\star Which is more dangerous?
(A) boiling water
(B) steam
(C) no difference

Physics 207: Lecture 26, Pg 7

Energy transfer mechanisms

- Thermal conduction (or conduction):
* Energy transferred by direct contact.
* e.g.: energy enters the water through the bottom of the pan by thermal conduction.
* Important: home insulation, etc.
- Rate of energy transfer (J / s or W)
* Through a slab of area A and thickness Δx, with opposite faces at different temperatures, T_{c} and T_{h}

$$
\mathscr{P}=Q / \Delta t=k A\left(\mathrm{~T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}\right) / \Delta x
$$

$\star k$:Thermal conductivity ($\mathrm{J} / \mathrm{sm} \mathrm{C}$)

Lecture 26: Exercise 2

 Thermal Conduction- Two identically shaped bars (one blue and one green) are placed between two different thermal reservoirs . The thermal conductivity coefficient k is twice as large for the blue as the green.

- You measure the temperature at the joint between the green and blue bars. Which of the following is true?
(A) $T_{\text {top }}>T_{\text {bottom }}$
(B) $\mathrm{T}_{\text {top }}=\mathrm{T}_{\text {bottom }}$ (C) $\mathrm{T}_{\text {top }}<\mathrm{T}_{\text {bottom }}$
(D) need to know k

Physics 207: Lecture 26. Pg 10

Lecture 26: Exercise 3 Thermal Conduction

- Two thermal conductors (possibly inhomogeneous) are butted together and in contact with two thermal reservoirs held at the temperatures shown.
- Which of the temperature vs. position plots below is most physical?

(A)

(B)

(C)

Physics 207 - Lecture 23

Energy transfer mechanisms

- Convection:
* Energy is transferred by flow of substance 1. Heating a room (air convection)

2. Warming of North Altantic by warm waters from the equatorial regions

* Natural convection: from differences in density
* Forced convection: from pump of fan
- Radiation:
* Energy is transferred by photons
e.g.: infrared lamps
* Stefan's Law

$$
\mathscr{P}=\sigma A e \mathrm{~T}^{4}(\text { power radiated })
$$

$\% \sigma=5.7 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}, \mathrm{~T}$ is in Kelvin, and A is the surface area

* e is a constant called the emissivity

Physics 207: Lecture 26, Pg 14

Anti-global warming or the nuclear winter scenario

- Assume I $=1340 \mathrm{~W} / \mathrm{m}^{2}$ from the sun is incident on a thick dust cloud above the Earth and this energy is absorbed, equilibrated and then reradiated towards space where the Earth's surface is in thermal equilibrium with cloud. Let e (the emissivity) be unity for all wavelengths of light.
- What is the Earth's temperature?
$\star P=\sigma A \mathrm{~T}^{4}=\sigma\left(4 \pi r^{2}\right) \mathrm{T}^{4}=/ \pi r^{2} \rightarrow \mathrm{~T}=[1 /(4 \times \sigma)]^{1 / 4}$
$\div \sigma=5.7 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
* $\mathrm{T}=277 \mathrm{~K}$ (A little on the chilly side.)

\qquad
Physics 207: Lecture 26, Pg 16
- Two types of variables
* State variables: describe the system (e.g. T, P, V, U).
* Transfer variables: describe the process (e.g. Q, W).
$=0$ unless a process occurs
\Rightarrow involve change in state variables.
Work done on gas (minus sign because
PV diagram system volume)
* $W=F d \cos \theta=-F \Delta y$

$$
=-\mathrm{PA} \Delta \mathrm{y}=-\mathrm{P} \Delta \mathrm{~V}
$$

* Valid only for isobaric processes (P constant)
* If not, use average force or calculus: $\mathrm{W}=$ area under PV curve
Physics 207: Lecture 26, Pg 17

Physics 207 - Lecture 23

Reversing the path ($3 \rightarrow 2 \rightarrow 1$)

- Work depends on the path taken in the PV-diagram :

(b)

(c)
(a) $\mathrm{W}_{\mathrm{a}}=\mathrm{W}_{1 \text { to } 2}+\mathrm{W}_{2 \text { to } 3}$ (here either P or V constant) * $\mathrm{W}_{\mathrm{a}}^{\prime}=0-\mathrm{P}_{\mathrm{i}}\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{f}}\right)<0$ (work done on system)
(b) $\mathrm{W}_{\mathrm{b}}^{\prime}=\mathrm{W}_{1 \text { to } 2}+\mathrm{W}_{2 \text { to } 3}$ (here either P or V constant) * $\mathrm{W}_{\mathrm{b}}^{\prime}=-\mathrm{P}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{f}}\right)+0<\mathrm{W}_{\mathrm{a}}<0$ (work done on system) (c) Need explicit form of P versus V

$1^{\text {st }}$ Law: Work (going full cycle)

- Work depends on the path taken in the PV-diagram :

(b)

(c)
(a) $\mathrm{W}_{\mathrm{a}}=\mathrm{W}_{1 \text { to } 2}+\mathrm{W}_{2 \text { to } 3}$ (here either P or V constant)
* $\mathrm{W}_{\mathrm{a}}=-\mathrm{P}_{\mathrm{i}}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)>0$ (work done on system)
(b) $\mathrm{W}_{\mathrm{b}}^{\prime}=\mathrm{W}_{3 \text { to } 4}+\mathrm{W}_{4 \text { to } 5}$ (here either P or V constant)
* $\mathrm{W}_{\mathrm{b}}^{\prime}=-\mathrm{P}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{f}}\right)<0$ (work done on system)
(a) \& (b) $W_{a}+W_{b}^{\prime}=-P_{i}\left(V_{f}-V_{i}\right)-P_{f}\left(V_{i}-V_{f}\right)=\left(P_{f}-P_{i}\right) \times\left(V_{f}-V_{i}\right)<0$
but work done by system ... (what I get to use)... is positive.
Physics 207: Lecture 26. Pg 21

First Law of Thermodynamics with heat (Q) and/or work (W)

- First Law of Thermodynamics

* Independent of path in PV-diagram
* Depends only on state of the system (P,V,T, ...)
\star Energy conservation statement \Rightarrow only U changes
- Isolated system
* No interaction with surroundings
* $\mathrm{Q}=\mathrm{W}=0 \Rightarrow \Delta \mathrm{U}=0$.
* $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{i}}$: internal energy remains constant.

Recap, Lecture 26

- Agenda: Chapter 20, Heat \& the $1^{\text {st }}$ Law of Thermodynaitinu
* Heat and energy
* Heat capacity
* Energy transfer mechanisms: (thermal conduction, convection, radiation)
$* 1^{\text {st }}$ Law of thermodynamics (i.e., You can't win)
* Work done by an ideal gas in a piston $>$ ($\mathrm{dW}=\mathrm{Fdx}=\mathrm{F} / \mathrm{A} \mathrm{Adx}=\mathrm{PdV}$, Work-Energy) (Looks new but it is really the same physics! Except the reference frame for displacement (i.e., volume)
* Introduction to thermodynamic cycles (Chapter 22) Assignments:
- Problem Set 9 due Tuesday, Dec. 5, 11:59 PM
- Problem Set 10 (Ch. 20 \& 21) due Tuesday, Dec. 12, 11:59 PM
- Wednesday, Chapter 21 (Kinetic Theory of Gasses)

