Physics 207, Lecture 27, Dec. 6

- Agenda: Ch. 20, $1^{\text {st }}$ Law of Thermodynamics, Ch. 21
$\star 1^{\text {st }}$ Law of thermodynamics $(\Delta \mathrm{U}=\mathrm{Q}+\mathrm{W} \rightarrow \mathrm{dU}=\mathrm{dQ}+\mathrm{dW})$
* Work done by an ideal gas in a piston
* Introduction to thermodynamic cycles (Chapter 22)
* Ideal gas at the molecular level, Internal Energy
\star Molar Specific Heat ($Q=m \mathrm{c} \Delta \mathrm{T}=\mathrm{nC} \Delta \mathrm{T}$)
* Ideal Gas Molar Heat Capacity (and $\Delta \mathrm{U}_{\text {int }}=\mathrm{Q}+\mathrm{W}$)

Constant V: $C_{v}=3 / 2 R$, Constant P: $C_{p}=3 / 2 R+R=5 / 2 R$

* Degree of Freedom and Equipartition theorem
* Adiabatic processes (no heat transfer)

Assignments:

- Problem Set 10 (Ch. 20 \& 21) due Tuesday, Dec. 12, 11:59 PM Ch. 20: 13,22,38,43,50,68 Ch.21: 2,16,29,36,70
- Monday, Chapter 22 (2nd Law of Thermdynamics)

Physics 207: Lecture 27, Pg 1

1st $^{\text {st }}$ Law: Work \& Heat

- Two types of variables
* State variables: describe the system (e.g. T, P, V, U).
* Transfer variables: describe the process (e.g. Q, W).
$=0$ unless a process occurs
\Rightarrow involve change in state variables.
- Work done on gas (minus sign because system volume is referenced)
* $\mathrm{W}=\mathrm{Fd} \cos \theta=-\mathrm{F} \Delta y$

$$
=-\mathrm{PA} \Delta \mathrm{y}=-\mathrm{P} \Delta \mathrm{~V}
$$

* Valid only for isobaric processes (P constant)
* If not, use average force or calculus:
W = area under PV curve

PV diagram

$1^{\text {st }}$ Law: Work (Area under the curve)

- Work depends on the path taken in the PV-diagram :

(a) $\mathrm{W}_{\mathrm{a}}=\mathrm{W}_{1 \text { to } 2}+\mathrm{W}_{2 \text { to } 3}$ (here either P or V constant)
* $\mathrm{W}_{\mathrm{a}}=-\mathrm{P}_{\mathrm{i}}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)+0>0$ (work done on system)
(b) $\mathrm{W}_{\mathrm{b}}=\mathrm{W}_{1 \text { to } 2}+\mathrm{W}_{2 \text { to } 3}$ (here either P or V constant)
* $\mathrm{W}_{\mathrm{b}}=0-\mathrm{P}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)>\mathrm{W}_{\mathrm{a}}>0$ (work done on system)
(c) Need explicit form of P versus V but $\mathrm{W}_{\mathrm{c}}>0$

Physics 207: Lecture 27, Pg 3
Physics 207: Lecture 27, Pg 4

Reversing the path ($3 \rightarrow 2 \rightarrow 1$)

- Work depends on the path taken in the PV-diagram :

(b)

(c)
(a) $\mathrm{W}_{\mathrm{a}}=\mathrm{W}_{1 \text { to } 2}+\mathrm{W}_{2 \text { to } 3}$ (here either P or V constant) * $\mathrm{W}_{\mathrm{a}}^{\prime}=0-\mathrm{P}_{\mathrm{i}}\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{f}}\right)<0$ (work done on system)
(b) $\mathrm{W}_{\mathrm{b}}=\mathrm{W}_{1 \text { to } 2}+\mathrm{W}_{2 \text { to } 3}$ (here either P or V constant) $\nLeftarrow \mathrm{W}_{\mathrm{b}}^{\prime}=-\mathrm{P}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{f}}\right)+0<\mathrm{W}_{\mathrm{a}}<0$ (work done on system) (c) Need explicit form of P versus V but $\mathrm{W}_{\mathrm{c}}<0$

Physics 207: Lecture 27, Pg 5

(a) $\mathrm{W}_{\mathrm{a}}=\mathrm{W}_{1 \text { to } 2}+\mathrm{W}_{2 \text { to } 3}$ (here either P or V constant)

* $W_{a}=-P_{i}\left(V_{f}-V_{i}\right)>0$ (work done on system)
(b) $\mathrm{W}_{\mathrm{b}}^{\prime}=\mathrm{W}_{3 \text { to } 4}+\mathrm{W}_{4 \text { to } 5}$ (here either P or V constant)
\% $\mathrm{W}_{\mathrm{b}}^{\prime}=-\mathrm{P}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{f}}\right)<0 \quad$ (work done by system >0)
(a) \& (b) $W_{a}+W_{b}^{\prime}=-P_{i}\left(V_{f}-V_{i}\right)-P_{f}\left(V_{i}-V_{f}\right)=\left(P_{f}-P_{i}\right) \times\left(V_{f}-V_{i}\right)<0$
but net work done by system ... (what I get to use)... is positive. Physics 207: Lecture 27, Pg 6

Physics 207 - Lecture 27

Lecture 27: Exercise 1 Work done by system

- Consider the two paths, 1 and 2, connecting points \mathbf{i} and f on the pV diagram.
* The magnitude of the work, $\left|\mathrm{W}_{2}\right|$, done by the system in going from \mathbf{i} to f along path 2 is

(A) $\left|W_{2}\right|>\left|W_{1}\right|$
(B) $\left|W_{2}\right|=\left|W_{1}\right|$
(A) $\left|W_{2}\right|<\left|W_{1}\right|$

Work (W) and heat (Q) both depend on the path taken in the PV-diagram!

Physics 207: Lecture 27. Pg 8

Other Applications (continued)

- Isovolumetric process:
* Constant volume $\Rightarrow \mathrm{W}=0$.
* So $\Delta \mathrm{U}=\mathrm{Q} \Rightarrow$ all heat is transferred into internal energy > e.g. heating a "can" (and no work done).
- Isothermal process:
* T is constant
* If ideal gas: $P V=n R T$, we find $P=n R T / V$
* Work (on system) becomes :

$$
W=-\int_{V_{1}}^{V_{2}} P d V=-n R T \int_{V_{1}}^{V_{2}} \frac{d V}{V}=n R T \ln \left(\frac{V_{1}}{V_{2}}\right)
$$

$\% \mathrm{PV}$ is constant.

* PV-diagram: isotherm

Lecture 27: Exercise 2

 Processes- Identify the nature of paths $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D
$\%$ Isobaric, isothermal, isovolumetric, and adiabatic
p

Physics 207 - Lecture 27

Lecture 27: Exercise 3

Cyclic processes

- Identify A gas is taken through the complete cycle shown.

The net work done on the system was

Lecture 27: Exercise 3

Cyclic processes (going in circles)

- Identify A gas is taken through the complete cycle shown. The net work done on the system (by the world) was

(A) positive (B) negative (C) zero

Work is done only on the horizontal paths, and the area under the third path segment is positive and larger than the area under the first path segment, which is negative. Hence the net work (on the
system) is positive. (We, the world, are not gaining positive work.)

Physics 207: Lecture 27, Pg 17

Ch. 21: Kinetic Theory of an Ideal Gas

- Microscopic model for a gas
* Goal: relate T and P to motion of the molecules
- Assumptions for ideal gas:
* Number of molecules N is large
* They obey Newton's laws (but move randomly as a whole)
* Short-range interactions during elastic
$P V=N k_{B} T$
collisions
* Elastic collisions with walls (an impulse) $P V=\frac{2}{3} N\left(\frac{1}{2} m \overline{v^{2}}\right)$
* Pure substance: identical molecules
- This implies that temperature, for an ideal gas, is a direct measure of average kinetic energy of a molecule
$\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{B} T$

Physics 207 - Lecture 27

Lecture 27, Exercise 3

- Consider a fixed volume of ideal gas. When N or T is doubled the pressure increases by a factor of 2.

$$
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{B} T \quad P V=N k_{B} T
$$

1. If T is doubled, what happens to the rate at which a single molecule in the gas has a wall bounce?
(A) $x 1.4$
(B) $x 2$
(C) $x 4$
2. If N is doubled, what happens to the rate at which a single molecule in the gas has a wall bounce?
(A) $\times 1$
(B) $\times 1.4$
(C) $x 2$

Kinetic Theory of an Ideal Gas

- Theorem of equipartition of energy (A key result of classical physics)

$$
\overline{v_{x}^{2}}=\overline{v_{y}^{2}}=\overline{v_{z}^{2}}=\frac{1}{3} \overline{v^{2}} \quad \Rightarrow \quad \frac{1}{2} m \overline{v_{i}^{2}}=\frac{1}{2} k_{B} T
$$

\star Each degree of freedom contributes $\mathrm{k}_{\mathrm{B}} \mathrm{T} / 2$ to the energy of a system (e.g., translation, rotation, or vibration)

- Total translational kinetic energy of a system of N ideal gas molecules

$$
K_{\text {tot trans }}=N\left(\frac{1}{2} m \overline{v^{2}}\right)=\frac{3}{2} N k_{B} T=\frac{3}{2} n R T
$$

$$
\text { * Internal energy of monoatomic gas: } \mathrm{U}=\mathrm{K}_{\text {ideal gas }}=\mathrm{K}_{\text {tot trans }}
$$

- Root-mean-square speed:

$$
v_{r m s}=\sqrt{\overline{v^{2}}}=\sqrt{\frac{3 k_{B} T}{m}}
$$

Lecture 27, Exercise 6

- An atom in a classical solid can be characterized by three independent harmonic oscillators, one for the x, y and z directions?
- How many degrees of freedom are there?

(A) 1
$\begin{array}{llll}\text { (B) } 2 & \text { (C) } 3 & \text { (D) } 4 & \text { (E) Some other number }\end{array}$
$\begin{array}{llll}\text { (A) } 1 & \text { (B) } 2 & \text { (C) } 3 & \text { (D) } 4\end{array}$ (E) Some other number
Physics 207: Lecture 27, Pg 21

Lecture 27, Exercise 6

- An atom in a classical solid can be characterized by three independent harmonic oscillators, one for the x, y and z directions (U per atom $=3$ RT) ?
- What is the classical molar heat capacity ($\mathrm{P} \Delta \mathrm{V} \cong 0$)?

$\begin{array}{llll}\text { (A) } n R & \text { (B) } 2 n R & \text { (C) } 3 n R & \text { (D) } 4 n R\end{array}$ (E) Some other number
Physics 207:Lecture 27, Pg 24

Physics 207 - Lecture 27

Adiabatic Processes

- By definition a process in which no heat tranfer (Q) occurs

For an Ideal Gas:
$P V^{\gamma}=$ const

$$
\gamma \equiv \frac{C_{\mathrm{P}}}{C_{\mathrm{V}}}
$$

- Adiabatic process:
* If ideal gas then $\mathrm{PV} \gamma$ is constant
* PV=nRT but not isothermal
* Work (on system) becomes :

$$
W=-\int_{V_{1}}^{V_{2}} P d V=-\int_{V_{1}}^{V_{2}} \frac{\text { const }}{V^{\gamma}} \frac{d V}{V}=\frac{\text { const }}{\gamma}\left(V_{2}^{-\gamma}-V_{1}^{-\gamma}\right)
$$

Recap, Lecture 27

- Agenda: Ch. 20, $1^{\text {st }}$ Law of Thermodynamics, Ch. 21 $* 1^{\text {st }}$ Law of thermodynamics $(\Delta U=Q+W \rightarrow d U=d Q+d W)$
* Work done by an ideal gas in a piston
* Introduction to thermodynamic cycles (Chapter 22)
* Ideal gas at the molecular level, Internal Energy
* Degree of Freedom and Equipartition theorem
* Adiabatic processes (no heat transfer)

Assignments:

- Problem Set 10 (Ch. 20 \& 21) due Tuesday, Dec. 12, 11:59 PM Ch. 20: 13,22,38,43,50,68 Ch.21:2,16,29,36,70
- Finish Ch. 21, Monday, Read Chapter 22 (2nd Law of Thermdynamics)

