Physics 207 - Lecture 23

Physics 207, Lecture 28, Dec. 11

- Agenda: Ch. 21 Finish, Start Ch. 22
* Ideal gas at the molecular level, Internal Energy
* Molar Specific Heat ($\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}=\mathrm{nC} \Delta \mathrm{T}$)
* Ideal Gas Molar Heat Capacity (and $\Delta \mathrm{U}_{\text {int }}=\mathrm{Q}+\mathrm{W}$) Constant V: $\mathrm{C}_{\mathrm{v}}=3 / 2 \mathrm{R}$, Constant P: $\mathrm{C}_{\mathrm{p}}=3 / 2 \mathrm{R}+\mathrm{R}=5 / 2 R$
* Adiabatic processes (no heat transfer)
* Heat engines and Second Law of thermodynamics
* Reversible/irreversible processes and Entropy

Assignments:

- Problem Set 10 (Ch. 20 \& 21) due Tuesday, Dec. 12, 11:59 PM Ch. 20: 13,22,38,43,50,68 Ch.21: 2,16,29,36,70
- Problem Set 11, Ch. 22: 6, 7, 17, 37, 46 (Due, Friday, Dec. 15, 11:59 PM)
- Wednesday, Work on problem set 11

Lecture 28, Exercise 1

- An atom in a classical solid can be characterized by three independent harmonic oscillators, one for the x, y and $z-$ directions?
- How many degrees of freedom are there?

(A) 1
(B) 2
(C) 3 (D)
(E) Some other number

Physics 207: Lecture 28, Pg 2

Lecture 28, Exercise 2

- An atom in a classical solid can be characterized by three independent harmonic oscillators, one for the x, y and z directions (U per atom $=3 \mathrm{k}_{\mathrm{B}} \mathrm{T}$) ?
- What is the classical molar heat capacity ($\mathrm{P} \Delta \mathrm{V} \cong 0$!)?

(A) nR
(B) $2 n \mathrm{R}$
(C) $3 n R$
(D) $4 n R$
(E) Some other number

Physics 207: Lecture 28, Pg 4

Adiabatic Processes

- By definition a process in which no heat tranfer (Q) occurs

For an Ideal Gas:

$$
P V^{\gamma}=\text { const }
$$

- Adiabatic process:
* $\mathrm{PV} \gamma$ is constant
* $\mathrm{PV}=\mathrm{nRT}$ but not isothermal
* Work (on system) becomes :

$$
W=-\int_{V_{1}}^{V_{2}} P d V=-\int_{V_{1}}^{V_{2}} \frac{\text { const }}{V^{\gamma}} \frac{d V}{V}=\frac{\text { const }}{\gamma}\left(V_{2}^{-\gamma}-V_{1}^{-\gamma}\right)
$$

Physics 207 - Lecture 23

Granularity, Energy and the Boltzmann Statistics

- There are discrete number accessible energy levels in any finite system. It can be shown that if there are many more levels than particles to fill them the probability is just

$$
P(E)=\exp \left(-E / k_{B} T\right)
$$

- The energy levels for a Quantum Mechanical (i.e., discrete quantized states) ideal gas is shown before and after a change (highly idealized diagram, imagine lots more levels and lots more particles).
- Here we increase the box size slowly and perform a "quasistatic, adiabatic expansion"

Efficiency of a Heat Engine

- How can we define a "figure of merit" for a heat engine?
- Define the efficiency ε as:

$$
\varepsilon=\frac{W_{\text {cycle }}}{\left|Q_{h}\right|}=\frac{\left|Q_{h}\right|-\left|Q_{c}\right|}{\left|Q_{h}\right|}=1-\frac{\left|Q_{c}\right|}{\left|Q_{h}\right|}
$$

Observation: It is impossible to construct a heat engine that, operating in a cycle, produces no other effect than the absorption of energy from a reservoir and the
performance of an equal amount of work
Physics 207: Lecture 28, Pg 12

Physics 207 - Lecture 23

Lecture 28: Exercise 3 Efficiency

- Consider two heat engines:
* Engine I:
$>$ Requires $\mathrm{Q}_{\text {in }}=100 \mathrm{~J}$ of heat added to system to get $\mathrm{W}=10 \mathrm{~J}$ of work (done on world in cycle)
* Engine II:
$>$ To get $\mathrm{W}=10 \mathrm{~J}$ of work, $\mathrm{Q}_{\text {out }}=100 \mathrm{~J}$ of heat is exhausted to the environment
- Compare ε_{1}, the efficiency of engine I, to $\varepsilon_{\| 1}$, the efficiency of engine II.
(A) $\varepsilon_{I}<\varepsilon_{I I}$

$$
\varepsilon=\frac{W_{\text {cycle }}}{\left|Q_{h}\right|}=\frac{\left|Q_{h}\right|-\left|Q_{c}\right|}{\left|Q_{h}\right|}=1-\frac{\left|Q_{c}\right|}{\left|Q_{h}\right|}
$$

(B) $\varepsilon_{I}>\varepsilon_{I I}$
(C) Not enough data to determine

Physics 207: Lecture 28, Pg 14

Reversible/irreversible processes and the best engine, ever

- Reversible process:
* Every state along some path is an equilibrium state
* The system can be returned to its initial conditions along the same path
- Irreversible process;
\star Process which is not reversible !
- All real physical processes are irreversible
*e.g. energy is lost through friction and the initial conditions cannot be reached along the same path
* However, some processes are almost reversible
$>$ If they occur slowly enough (so that system is almost in equilibrium)

Physics 207: Lecture 28, Pg 15

The Carnot Engine (the best you can do)

- No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs.
A. $\mathrm{A} \rightarrow \mathrm{B}$, the gas expands isothermally while in contact with a reservoir at $T_{h} \quad P$
B. $\mathrm{B} \rightarrow \mathrm{C}$, the gas expands adiabatically $\left(\mathrm{Q}=0, \Delta \mathrm{U}=\mathrm{W}_{\mathrm{B} \rightarrow \mathrm{C}}, \mathrm{T}_{\mathrm{h}} \rightarrow \mathrm{T}_{\mathrm{c}}\right)$,
$\underline{\mathrm{PV}^{\gamma}=\text { constant }}$
C. $\mathrm{C} \rightarrow \mathrm{D}$, the gas is compressed isothermally while in contact with a reservoir at T_{c}
D. $\mathrm{D} \rightarrow \mathrm{A}$, the gas compresses adiabatically $\left(\mathrm{Q}=0, \Delta \mathrm{U}=\mathrm{W}_{\mathrm{D} \rightarrow \mathrm{A}}, \mathrm{T}_{\mathrm{c}} \rightarrow \mathrm{T}_{\mathrm{h}}\right)$

Physics 207: Lecture 28. Pg 17

Carnot Cycle Efficiency

$\varepsilon_{\text {Carnot }}=1-Q_{c} / Q_{h}$
$Q_{A \rightarrow B}=Q_{h}=W_{A B}=n R T_{h} \ln \left(V_{B} / V_{A}\right)$
$Q_{C \rightarrow D}=Q_{c}=W_{C D}=n R T_{c} \ln \left(V_{D} / V_{C}\right)$
(work done by gas)
But $P_{A} V_{A}=P_{B} V_{B}=n R T_{h}$ and $P_{C} V_{C}=P_{D} V_{D}=n R T_{c}$
so $P_{B} / P_{A}=V_{A} / V_{B}$ and $P_{C} / P_{D}=V_{D} / V_{\text {IC }}$
as well as $\mathrm{P}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}{ }^{\gamma}=\mathrm{P}_{\mathrm{C}} \mathrm{V}_{\mathrm{C}}{ }^{\gamma}$ and $\mathrm{P}_{\mathrm{D}} \mathrm{V}_{\mathrm{D}}{ }^{\gamma}=\mathrm{P}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}^{\gamma}$
with $P_{B} V_{B} \gamma / P_{A} V_{A}{ }^{\gamma}=P_{C} V_{C} C^{\gamma} / P_{D} V_{D}{ }^{\gamma}$ thus

$$
\rightarrow \quad\left(\mathrm{V}_{\mathrm{B}} / \mathrm{V}_{\mathrm{A}}\right)=\left(\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{C}}\right)
$$

$Q_{c} / Q_{h}=T_{c} / T_{h}$
Finally
$\varepsilon_{\text {Carnot }}=1-T_{c} / T_{h}$

Physics 207 - Lecture 23

The Carnot Engine

- Carnot showed that the thermal efficiency of a Carnot engine is:

$$
\varepsilon_{\text {Carnot cycle }}=1-\frac{\mathrm{T}_{\text {cold }}}{\mathrm{T}_{\text {hot }}}
$$

- All real engines are less efficient than the Carnot engine because they operate irreversibly due to the path and friction as they complete a cycle in a brief time period.

Power from ocean thermal gradients... oceans contain large amounts of energy Carnot Cycle Efficiency

See: http://www.nrel.gov/otec/what.html
Physics 207: Lecture 28, Pg 20

$$
\begin{aligned}
& \text { Ocean Conversion Efficiency } \\
& \varepsilon_{\text {Carnot }}=1-Q_{c} / Q_{h}=1-T_{c} / T_{h} \\
& \begin{aligned}
& \varepsilon_{\text {Carnot }}=1-T_{c} / T_{h}=1-275 \mathrm{~K} / 300 \mathrm{~K} \\
&=0.083 \text { (even before internal losses } \\
& \quad \text { and assuming a REAL cycle) }
\end{aligned}
\end{aligned}
$$

Still:"This potential is estimated to be about 10^{13} watts of base load power generation, according to some experts. The cold, deep
seawater used in the OTEC process is also rich in nutrients, and it
can be used to culture both marine organisms and plant life near the shore or on land."
"Energy conversion efficiencies as high as 97\%
were achieved."
See: http://www.nrel.gov/otec/what.html
So $\varepsilon=1-Q_{c} / Q_{h}$ always correct but
$\varepsilon_{\text {Carnot }}=1-T_{c} / T_{h}$ only reflects a Carnot cycle

Lecture 28: Exercises 4 and 5 Free Expansion and the $2^{\text {nd }}$ Law

You have an ideal gas in a box of volume V_{1}. Suddenly you remove the partition and the gas now occupies a large volume V_{2}.
(1) How much work was done by the system?
(2) What is the final temperature $\left(\mathrm{T}_{2}\right)$?
(3) Can the partition be reinstalled with all of the gas molecules back in V_{1}
1: (A) $W>0$
(B) $\mathrm{W}=0$
(C) $\mathrm{W}<0$
2: (A) $\mathrm{T}_{2}>\mathrm{T}_{1}$
(B) $\mathrm{T}_{2}=\mathrm{T}_{1}$
(C) $\mathrm{T}_{2}>\mathrm{T}_{1}$

Entropy and the 2 ${ }^{\text {nd }}$ Law

- Will the atoms go back?
* Although possible, it is quite improbable
* The are many more ways to distribute the atoms in the larger volume that the smaller one.
- Disorderly arrangements are much more probable than orderly ones

all atoms no atoms
- Isolated systems tend toward greater disorder * Entropy (S) is a measure of that disorder
* Entropy ($\Delta \mathrm{S}$) increases in all natural processes. (The $2^{\text {nd }}$ Law)
* Entropy and temperature, as defined, guarantees the proper direction of heat flow.

Entropy and the $\mathbf{2}^{\text {nd }}$ Law

- In a reversible process the total entropy remains constant, $\Delta \mathrm{S}=0$!
- In a process involving heat transfer the change in entropy ΔS between the starting and final state is given by the hea transferred Q divided by the absolute temperature T of the system.
- The $2^{\text {nd }}$ Law of Thermodynamics

$$
\Delta S \equiv \frac{\mathrm{Q}}{\mathrm{~T}}
$$

"There is a quantity known as entropy that in a closed system always remains the same (reversible) or increases (irreversible)."

- Entropy, when constructed from a microscopic model, is a measure of disorder in a system.

Physics 207 - Lecture 23

The Laws of Thermodynamics

- First Law

You can't get something for nothing.

- Second Law You can't break even.
- Do not forget: Entropy, S, is a state variable

Entropy and Thermodynamic processes
Examples of Entropy Changes:

Assume a reversible change in volume and temperature of an ideal gas by expansion against a piston held at constant pressure ($\mathrm{dU}=\mathrm{dQ}-\mathrm{P} d V$ with $\mathrm{PV}=\mathrm{nRT}$ and $\mathrm{dU} / \mathrm{dT}=\mathrm{C}_{\mathrm{v}}$):

$$
\begin{aligned}
& \Delta S=\int_{i}^{f} d Q / T=\int_{i}^{f}(d U+P d V) / T \\
& \Delta S=\int_{i}^{f}\left\{C_{v} d T / T+n R(d V / V)\right\} \\
& \Delta S=n C_{v} \ln \left(T_{f} / T_{i}\right)+n R \ln \left(V_{f} / V_{i}\right)
\end{aligned}
$$

Ice melting:

$$
\Delta \mathrm{S}=\int_{\mathrm{i}}{ }^{\mathrm{f}} \mathrm{dQ} / \mathrm{T}=\mathrm{Q} / \mathrm{T}_{\text {melting }}=\mathrm{m}_{\mathrm{f}} / \mathrm{T}_{\text {melting }}
$$

Physics 207: Lecture 28, Pg 26

Recap, Lecture 28

- Agenda: Ch. 21 Finish, Start Ch. 22
* Ideal gas at the molecular level, Internal Energy
* Molar Specific Heat ($\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}=\mathrm{nC} \Delta \mathrm{T}$)
* Ideal Gas Molar Heat Capacity (and $\Delta \mathrm{U}_{\text {int }}=\mathrm{Q}+\mathrm{W}$) Constant V: $\mathrm{C}_{\mathrm{v}}=3 / 2 \mathrm{R}$, Constant P: $\mathrm{C}_{\mathrm{p}}=3 / 2 \mathrm{R}+\mathrm{R}=5 / 2 \mathrm{R}$
* Adiabatic processes (no external heat transfer)
* Heat engines and Second Law of thermodynamics
* Reversible/irreversible processes and Entropy

Assignments:

- Problem Set 10 (Ch. 20 \& 21) due Tuesday, Dec. 12, 11:59 PM Ch. 20: 13,22,38,43,50,68 Ch.21:2,16,29,36,70
- Problem Set 11, Ch. 22: 6, 7, 17, 37, 46 (Due, Friday, Dec. 15, 11:59 PM)
- Wednesday, Start Problem Set 11

