

Compression of a Jaguar XK8 cylinder

A Jaguar XK8 convertible has an eight-cylinder engine. At the beginning of its compression stroke, one of the cylinders contains 499 cm^3 of air at atmospheric pressure $1.01 \times 10^5 \text{ Pa}$ and a temperature of 27.0°C .

At the end of the stroke, the air has been compressed to a volume of 46.2 cm^3 and the gauge pressure has increased to $2.72 \times 10^6 \text{ Pa}$.

What is the final temperature of the gas in an engine cylinder after the compression stroke?

T₂ = 510°C

The increase in gas temperature caused by this compression stroke is one of the reasons why a car engine gets so hot when it is running.

Demo: freezing by evaporation

specific heat, latent heat, and temperature versus time graphs

The graph shows how the temperature of an initially solid sample changes as time goes by when it is placed above a flame that delivers a constant heating power (that is, a fixed amount of energy input in the form of heat per second). The process occurs in five distinct steps:

- 1. Increase the temperature of the solid until it reaches its melting temperature.
- 2. Melt the solid to form a liquid, maintaining a constant temperature.
- 3. Increase the temperature of the liquid until it reaches its boiling temperature.
- 4. Boil away all the liquid to form a gas, maintaining a constant temperature.
- 5. Increase the temperature of the gas (assuming that the gaseous sample is confined).

