

Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

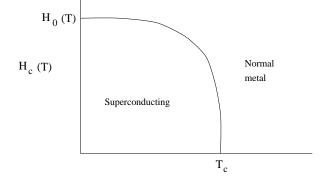
High T_c superconductors are at odds with conventional wisdom.

Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

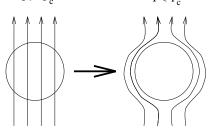


Second test for superconductivity is the Meissner/Ochsenfeld effect. There is complete expulsion of applied magnetic fields.

B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0$ \Rightarrow Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



i.e., superconductors are *perfect* diamagnets

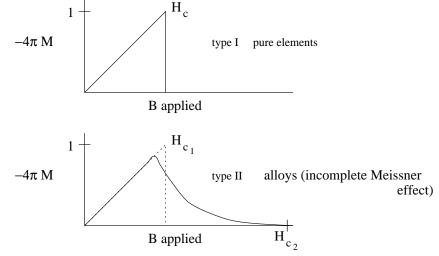
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

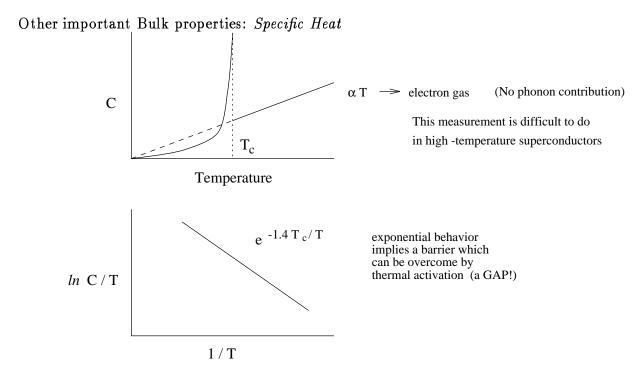
Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$

Magnetization of a superconductor:





The entropy of the S.C. state is smaller than in the normal state.

Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

We want the change in the Free energy (F) at constant temperature

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

for the normal $F_N(B_a) = F_N(0)$ ignore, $\chi_N \approx 0!$ At H_c (critical field)

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

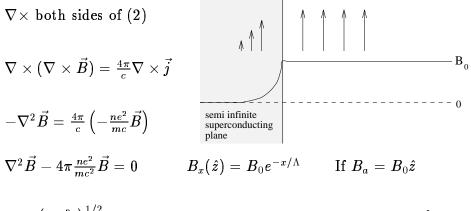
$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)

* These two equations relate $ec{B}$ and $ec{j}$ for a perfect conductor, they also allow time independent solution of \vec{B} and \vec{j}

(1) $\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} = const. = ??? \rightarrow 0$ (is what London said for a superconductor)



$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

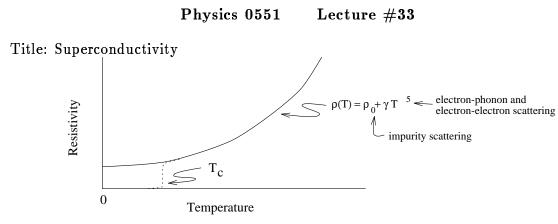
NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

 $abla imes (
abla imes ec{B}) \Longrightarrow$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

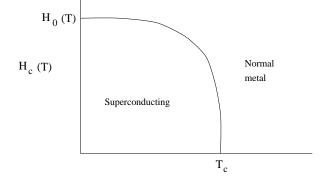
High T_c superconductors are at odds with conventional wisdom.

Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

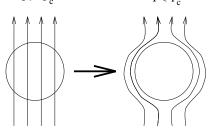


Second test for superconductivity is the Meissner/Ochsenfeld effect. There is complete expulsion of applied magnetic fields.

B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0 \Rightarrow$ Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



i.e., superconductors are *perfect* diamagnets

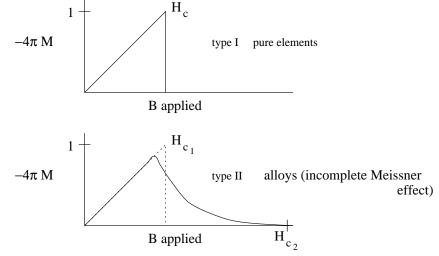
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

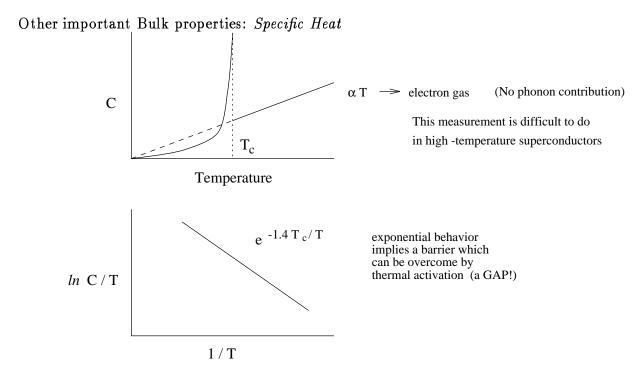
Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$

Magnetization of a superconductor:





The entropy of the S.C. state is smaller than in the normal state.

Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

We want the change in the Free energy (F) at constant temperature

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

for the normal $F_N(B_a) = F_N(0)$ ignore, $\chi_N \approx 0!$ At H_c (critical field)

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

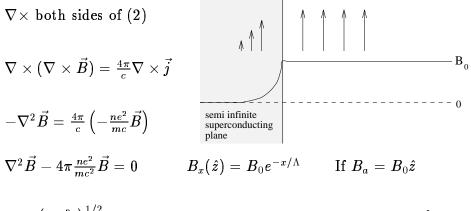
$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)

* These two equations relate $ec{B}$ and $ec{j}$ for a perfect conductor, they also allow time independent solution of \vec{B} and \vec{j}

(1) $\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} = const. = ??? \rightarrow 0$ (is what London said for a superconductor)



$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

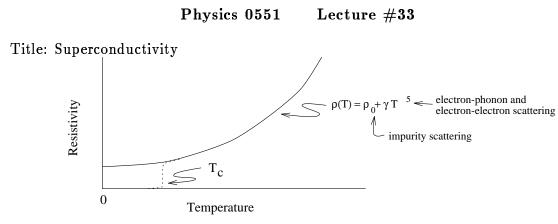
NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

 $abla imes (
abla imes ec{B}) \Longrightarrow$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

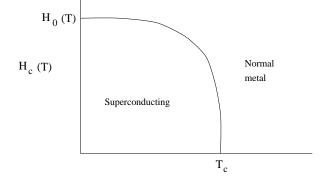
High T_c superconductors are at odds with conventional wisdom.

Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

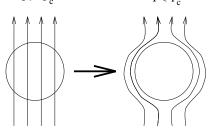


Second test for superconductivity is the Meissner/Ochsenfeld effect. There is complete expulsion of applied magnetic fields.

B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0 \Rightarrow$ Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



i.e., superconductors are *perfect* diamagnets

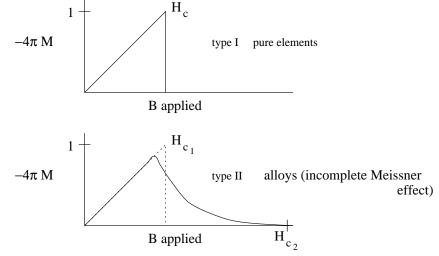
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

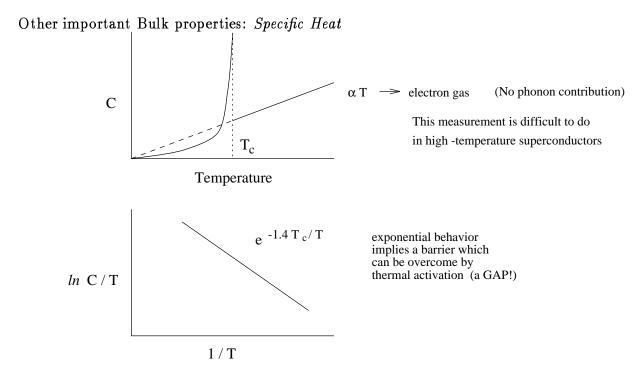
Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$

Magnetization of a superconductor:





The entropy of the S.C. state is smaller than in the normal state.

Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

We want the change in the Free energy (F) at constant temperature

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

for the normal $F_N(B_a) = F_N(0)$ ignore, $\chi_N \approx 0!$ At H_c (critical field)

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

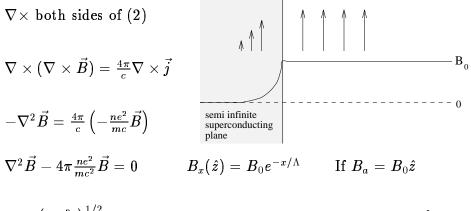
$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)

* These two equations relate $ec{B}$ and $ec{j}$ for a perfect conductor, they also allow time independent solution of \vec{B} and \vec{j}

(1) $\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} = const. = ??? \rightarrow 0$ (is what London said for a superconductor)



$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

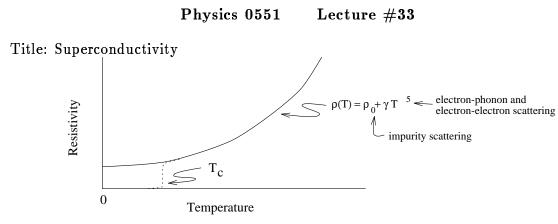
NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

 $abla imes (
abla imes ec{B}) \Longrightarrow$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

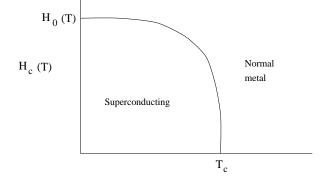
High T_c superconductors are at odds with conventional wisdom.

Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

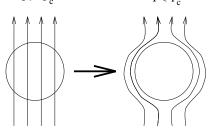


Second test for superconductivity is the Meissner/Ochsenfeld effect. There is complete expulsion of applied magnetic fields.

B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0 \Rightarrow$ Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



i.e., superconductors are *perfect* diamagnets

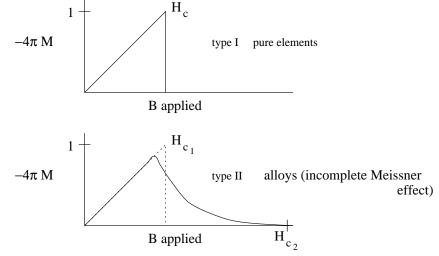
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

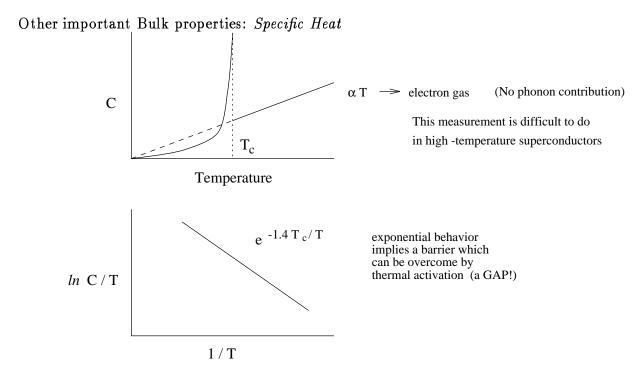
Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$

Magnetization of a superconductor:





The entropy of the S.C. state is smaller than in the normal state.

Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

We want the change in the Free energy (F) at constant temperature

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

for the normal $F_N(B_a) = F_N(0)$ ignore, $\chi_N \approx 0!$ At H_c (critical field)

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

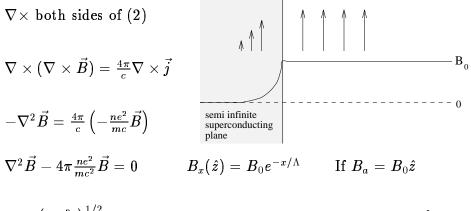
$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)

* These two equations relate $ec{B}$ and $ec{j}$ for a perfect conductor, they also allow time independent solution of \vec{B} and \vec{j}

(1) $\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} = const. = ??? \rightarrow 0$ (is what London said for a superconductor)



$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

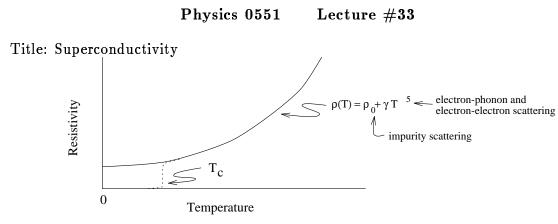
NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

 $abla imes (
abla imes ec{B}) \Longrightarrow$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

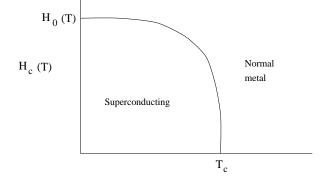
High T_c superconductors are at odds with conventional wisdom.

Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

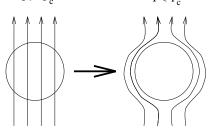


Second test for superconductivity is the Meissner/Ochsenfeld effect. There is complete expulsion of applied magnetic fields.

B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0 \Rightarrow$ Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



i.e., superconductors are *perfect* diamagnets

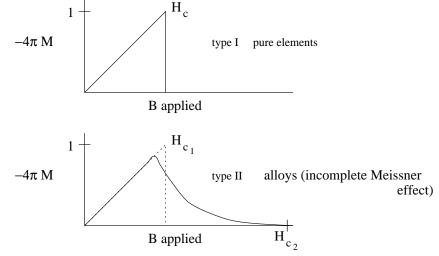
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

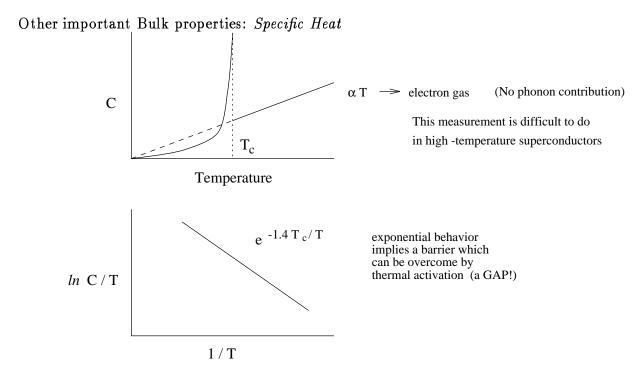
Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$

Magnetization of a superconductor:





The entropy of the S.C. state is smaller than in the normal state.

Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

We want the change in the Free energy (F) at constant temperature

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

for the normal $F_N(B_a) = F_N(0)$ ignore, $\chi_N \approx 0!$ At H_c (critical field)

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

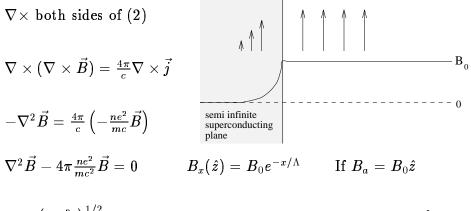
$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)

* These two equations relate $ec{B}$ and $ec{j}$ for a perfect conductor, they also allow time independent solution of \vec{B} and \vec{j}

(1) $\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} = const. = ??? \rightarrow 0$ (is what London said for a superconductor)



$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

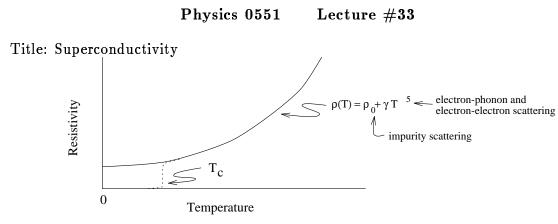
NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

 $abla imes (
abla imes ec{B}) \Longrightarrow$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

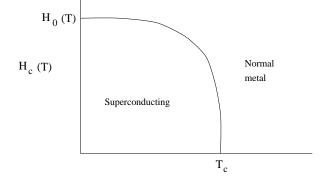
High T_c superconductors are at odds with conventional wisdom.

Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

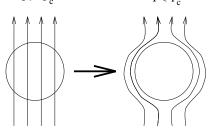


Second test for superconductivity is the Meissner/Ochsenfeld effect. There is complete expulsion of applied magnetic fields.

B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0 \Rightarrow$ Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



i.e., superconductors are *perfect* diamagnets

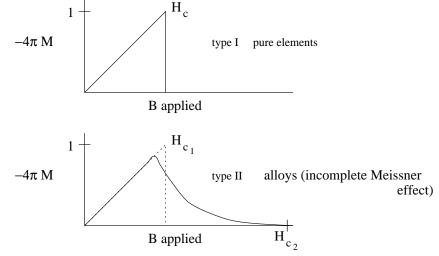
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

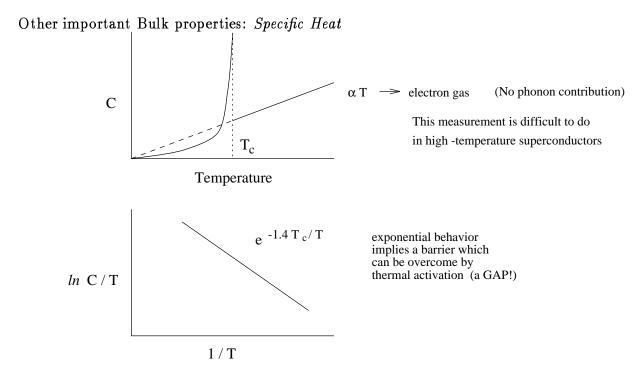
Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$

Magnetization of a superconductor:





The entropy of the S.C. state is smaller than in the normal state.

Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

We want the change in the Free energy (F) at constant temperature

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

for the normal $F_N(B_a) = F_N(0)$ ignore, $\chi_N \approx 0!$ At H_c (critical field)

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

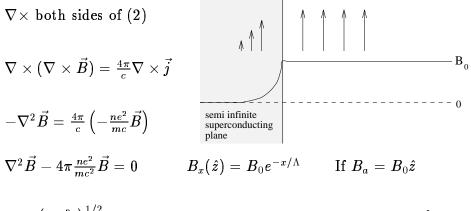
$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)

* These two equations relate $ec{B}$ and $ec{j}$ for a perfect conductor, they also allow time independent solution of \vec{B} and \vec{j}

(1) $\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} = const. = ??? \rightarrow 0$ (is what London said for a superconductor)



$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

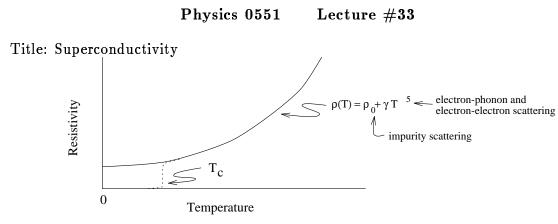
NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

 $abla imes (
abla imes ec{B}) \Longrightarrow$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

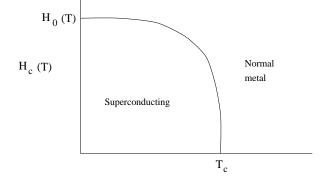
High T_c superconductors are at odds with conventional wisdom.

Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

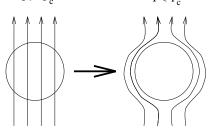


Second test for superconductivity is the Meissner/Ochsenfeld effect. There is complete expulsion of applied magnetic fields.

B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0$ \Rightarrow Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



i.e., superconductors are *perfect* diamagnets

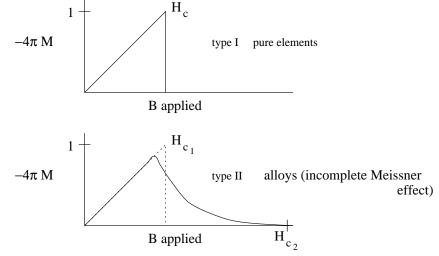
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

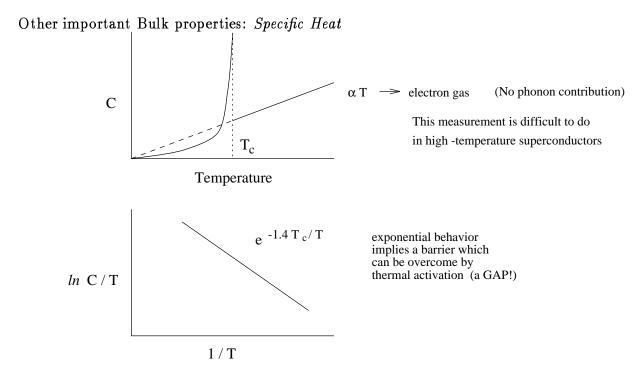
Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$

Magnetization of a superconductor:





The entropy of the S.C. state is smaller than in the normal state.

Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

We want the change in the Free energy (F) at constant temperature

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

for the normal $F_N(B_a) = F_N(0)$ ignore, $\chi_N \approx 0!$ At H_c (critical field)

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

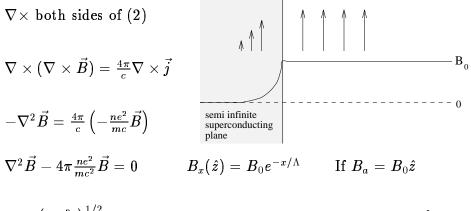
$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)

* These two equations relate $ec{B}$ and $ec{j}$ for a perfect conductor, they also allow time independent solution of \vec{B} and \vec{j}

(1) $\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} = const. = ??? \rightarrow 0$ (is what London said for a superconductor)



$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

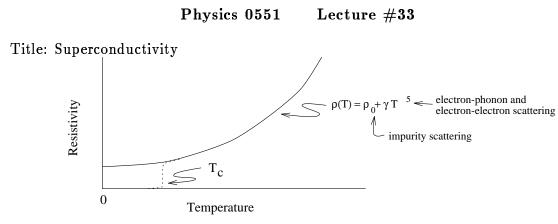
NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

 $abla imes (
abla imes ec{B}) \Longrightarrow$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

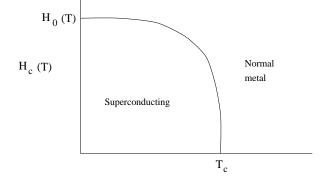
High T_c superconductors are at odds with conventional wisdom.

Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

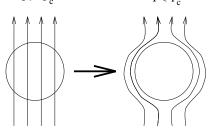
 T_c is very sensitive to applied magnetic fields.



B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0$ \Rightarrow Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



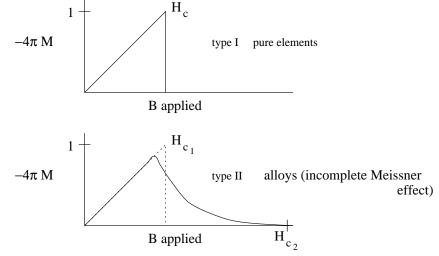
i.e., superconductors are *perfect* diamagnets

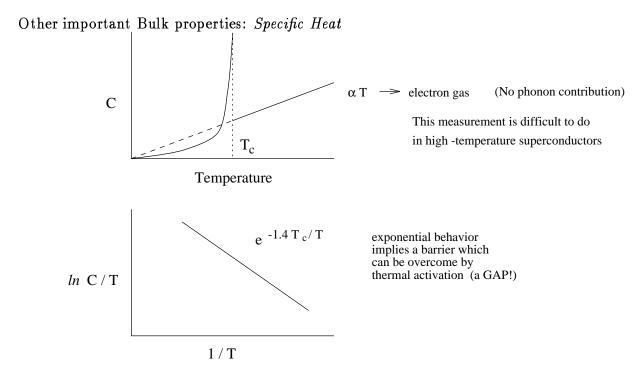
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$





Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

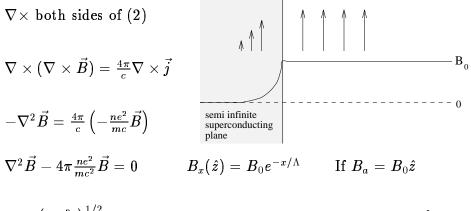
Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)



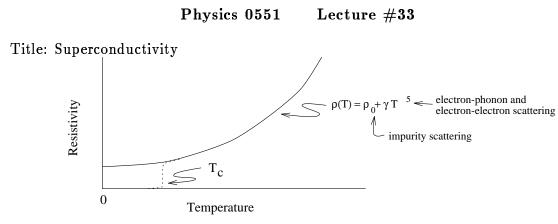
$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Superconductors are unusual for a variety of reasons. The first observations were made in 1911 by Kamerlingh Onnes (Denmark) on the low temperature behavior of Hg (mercury) and he observed a complete absence of ρ in the vicinity of 4°K.

Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

High T_c superconductors are at odds with conventional wisdom.

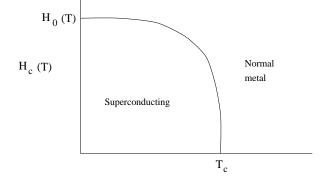
Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

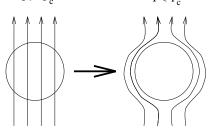
 T_c is very sensitive to the presence of magnetic impurities.



B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0$ \Rightarrow Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



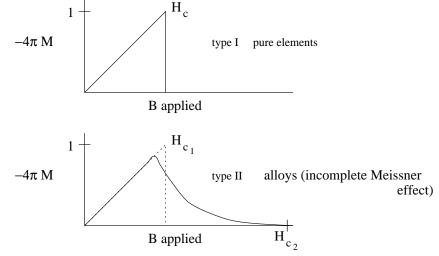
i.e., superconductors are *perfect* diamagnets

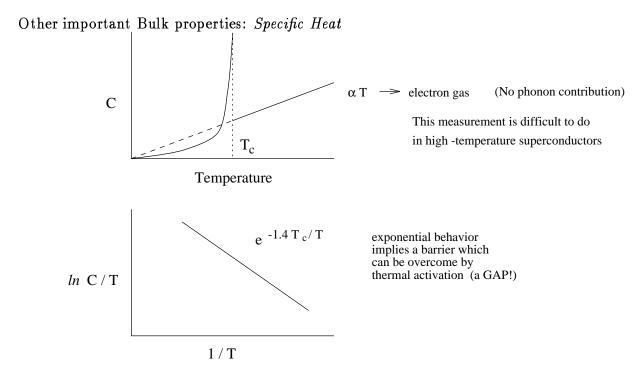
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$





Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

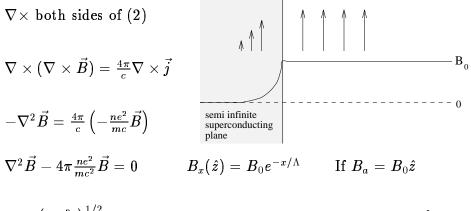
Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)



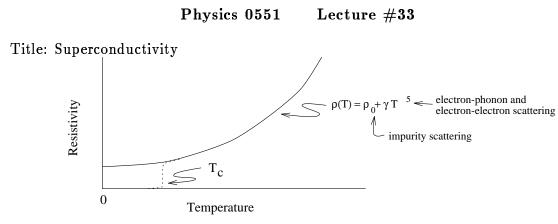
$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Superconductors are unusual for a variety of reasons. The first observations were made in 1911 by Kamerlingh Onnes (Denmark) on the low temperature behavior of Hg (mercury) and he observed a complete absence of ρ in the vicinity of 4°K.

Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

High T_c superconductors are at odds with conventional wisdom.

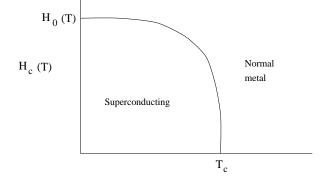
Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

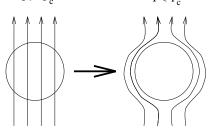
 T_c is very sensitive to the presence of magnetic impurities.



B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0$ \Rightarrow Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



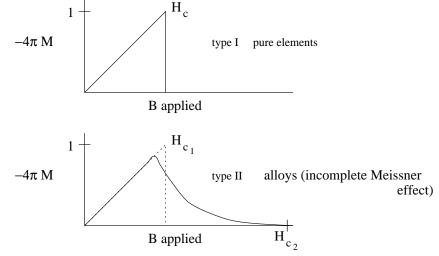
i.e., superconductors are *perfect* diamagnets

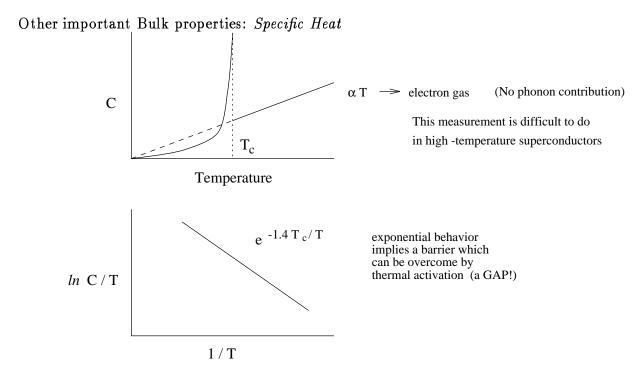
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$





Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

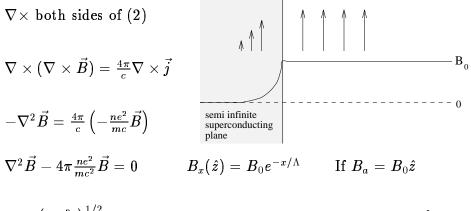
Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)



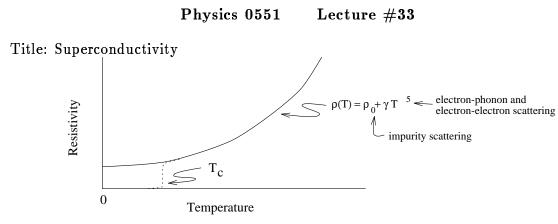
$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Superconductors are unusual for a variety of reasons. The first observations were made in 1911 by Kamerlingh Onnes (Denmark) on the low temperature behavior of Hg (mercury) and he observed a complete absence of ρ in the vicinity of 4°K.

Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

High T_c superconductors are at odds with conventional wisdom.

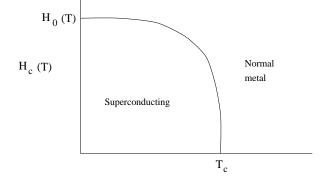
Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

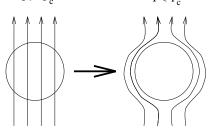
 T_c is very sensitive to the presence of magnetic impurities.



B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0$ \Rightarrow Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



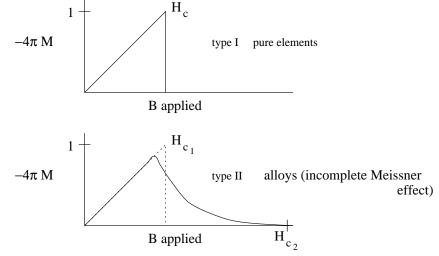
i.e., superconductors are *perfect* diamagnets

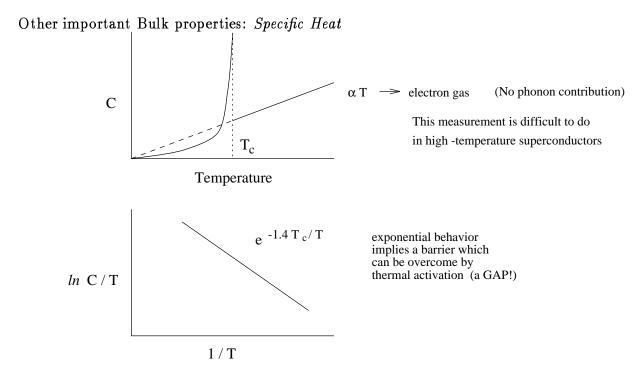
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$





Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

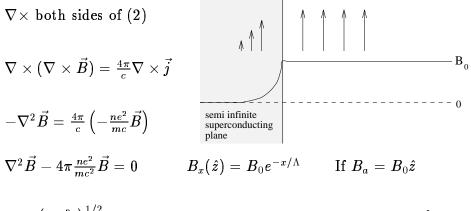
Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)



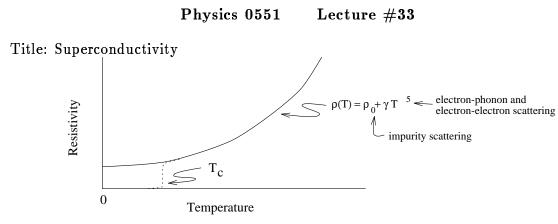
$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$



Superconductors are unusual for a variety of reasons. The first observations were made in 1911 by Kamerlingh Onnes (Denmark) on the low temperature behavior of Hg (mercury) and he observed a complete absence of ρ in the vicinity of 4°K.

Note: There is nothing in the "classical" Drude' theory of metals which can account for this behavior.

There are many systematics which accompany the occurrence of superconductivity

No monovalent Elements
No ferromagnetic elements
No Rare-earthsi.e., spin is not compatible
with superconductivity (conventional)Normal BCS (Bardeen-Cooper-Schrieffer)(1957)

 $10^{-2}{
m K}~< T_c < 23^{
m o}{
m K}$ or so ${
m Nb}_3{
m Ge}$ 23.2° K

High T_c superconductors are at odds with conventional wisdom.

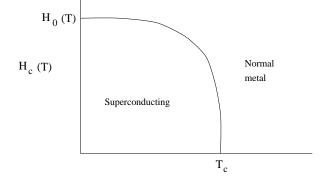
Oxides 35° K $La_{1.8} Sr_{.2}CuO_4$ Bednoorz and Müller 95° K $(YBa_2) Cu_3O_7$ 125° K Th- -Cu) Joter A percentage behavior in a is often due to structure

Note: Anomalous behavior in ρ is often due to structural transformation

Organic superconductor $(BEDT-TTF)_2Cu(NCS)_2$ 10.4°K

 T_c is very sensitive to applied magnetic fields.

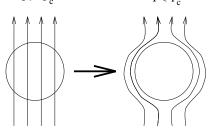
 T_c is very sensitive to the presence of magnetic impurities.



B=0 inside superconducting regions of a superconductor \implies Note that a superconductor is <u>NOT</u> a perfect conductor

Ohm's Law
$$\vec{E} = \rho \vec{J}$$

If $\rho = 0$, then $\vec{E} = 0$
But $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ (cgs) $\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$ (SI)
If $\vec{E} = 0$ then $\frac{\partial \vec{B}}{\partial t} = 0$ \Rightarrow Magnetic flux cannot be expelled!
In contrast
T > T_c T < T_c



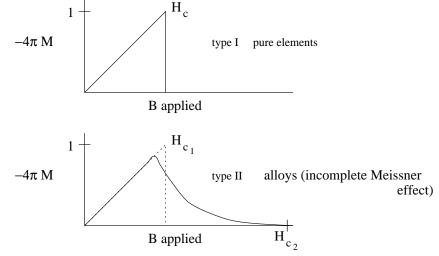
i.e., superconductors are *perfect* diamagnets

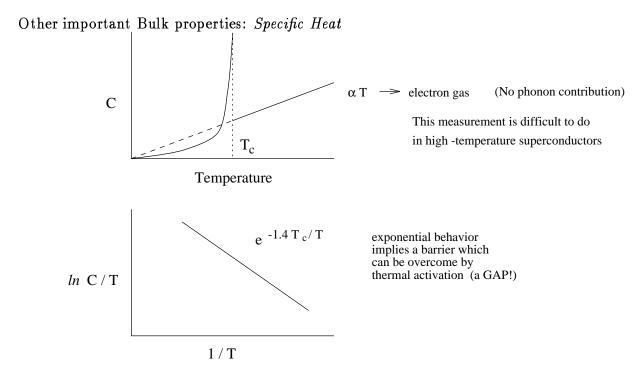
$$ec{B} = ec{H} + 4\piec{M} \hspace{0.5cm} ext{where} \hspace{0.5cm} \chi \equiv rac{ec{M}}{ec{H}} \hspace{0.5cm} ext{(cgs)}$$

Since $ec{B}=0, \quad \chi=-rac{1}{4\pi}$ (Not $-\infty$)

* Note since high T_c samples are often multiphase

$$\chi_{{}_{\mathrm{HT}_c}} < -rac{1}{4\pi} ~~\mathrm{or}~~\%~\mathrm{superconducting} = rac{\chi_{{}_{\mathrm{HT}_c}}}{-rac{1}{4\pi}}$$





Isotope effect (factor of 1/2 is approximate) $T_c \propto \frac{1}{M^{1/2}} \implies \text{implies a phonon mechanism}$

Thermodynamics of a superconductor:

S.C. \leftrightarrow Normal Transition is a reversible process, hence a thermodynamic treatment is possible

 2^{nd} Order Transition \rightarrow NO LATENT HEAT $\begin{array}{c} d(U-TS) &= -\vec{M} \cdot d\vec{H} \\ dU &= TdS - \vec{M} \cdot d\vec{H} \\ dU &= dQ - dW \end{array}$

How much energy is stored?

 $ec{M} \cdot dec{H}$

$$dU=TdS-ec{M}\cdot dec{B}_a \quad B_a \implies ext{magnetic field applied} \ ext{but } M=-rac{1}{4\pi}B_a$$

$$dF = d(U-TS) = -ec{M}\cdot dec{B}_a$$
but $ec{M} = \chiec{H} = -rac{1}{4\pi}~ec{B}_a$

$$dF = rac{1}{4\pi} \, ec{B_a} \cdot dec{B_a} \, F_{superconducting} \ 0 ext{ to } B_a ext{ is } B_{applied} \ F_s(B_a) - F_s(0) = B_a^2/8\pi$$

$$F_N(H_c) = F_S(H_c)$$
 No latent heat

therefore
$$F_N(0) = F_N(H_c) = F_S(0) + B_{H_c}^2 / 8\pi$$

so $F_N(0) - F_s(0) = B_{H_c}^2 / 8\pi$
 F_N
 F_N

 $g(\mathbf{0}) < \mathbf{I}_N(\mathbf{0})$

Since $|\vec{B}| = 0$ inside a superconductor, how does it behave microscopically? (i.e., what happens at the surface?)

London equation:

First consider a "perfect" conductor, and a momentum \vec{E} -field

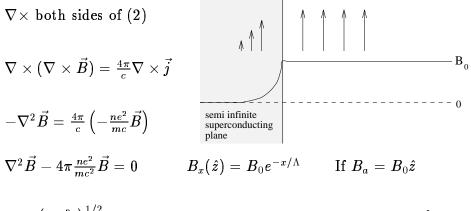
Faraday's law:

$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$

$$\nabla \times \vec{E} = \frac{m_e}{ne^2} \nabla \times \frac{d\vec{j}}{dt} \Longrightarrow \nabla \times \frac{d\vec{j}}{dt} = -\frac{ne^2}{mc} \frac{\partial \vec{B}}{\partial t}$$

$$\frac{\partial}{\partial t} \left(\nabla \times \vec{j} + \frac{ne^2}{mc} \vec{B} \right) = 0$$
(1)

and
$$\nabla \times \vec{B} = \frac{4\pi}{c}\vec{j}$$
 (2)



$$\Lambda \equiv \left(rac{mc^2}{4\pi ne^2}
ight)^{1/2}$$
 London penetration depth $\sim 100\text{-}1000 \mathrm{\AA}$

NOTES:

$$egin{aligned}
abla imes (
abla imes ec{B}) & \Longrightarrow & -
abla^2 ec{B} +
abla (
abla \cdot B) \ \end{pmatrix} \ \nabla imes ec{B} &= egin{pmatrix} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ B_x & B_y & B_z \ \end{pmatrix} &= \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) \hat{i} + \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) \hat{j} + \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) \hat{k} \end{aligned}$$

$$egin{array}{cccc} i & j & k \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ \left(rac{\partial B_x}{\partial y} - rac{\partial^2 B_x}{\partial y^2}
ight) & -\left(rac{\partial^2 B_x}{\partial z^2} - rac{\partial^2 B_z}{\partial x \partial z}
ight) & \hat{i} + \ \left(rac{\partial B_z}{\partial y} - rac{\partial B_y}{\partial z}
ight) & \left(rac{\partial B_x}{\partial z} - rac{\partial B_z}{\partial x}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_x}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x^2} - rac{\partial^2 B_x}{\partial z^2}
ight) - \left(rac{\partial^2 B_y}{\partial x^2} - rac{\partial^2 B_z}{\partial y \partial x}
ight) & \hat{j} + \ \left(rac{\partial B_y}{\partial y \partial z} - rac{\partial B_y}{\partial z^2}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial x} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial y} - rac{\partial B_y}{\partial y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}
ight) & \left(rac{\partial B_y}{\partial B_y} - rac{\partial B_y}{\partial B_y}$$

$$egin{aligned} &\left(rac{\partial^2}{\partial x^2}-
abla^2
ight)B_x+rac{\partial^2 B_y}{\partial x\partial y}+rac{\partial B_z}{\partial x\partial z}&=&-
abla^2 B_y+rac{\partial}{\partial x}\left(rac{\partial B_x}{\partial x}+rac{\partial B_y}{\partial y}+rac{\partial B_z}{\partial z}
ight)\ &\left(rac{\partial^2}{\partial y^2}-
abla^2
ight)B_y+.... &=&-
abla^2 B_y+rac{\partial}{\partial y}(
abla\cdotec B)\ &\left(rac{\partial^2}{\partial z^2}-
abla^2
ight)B_z+... &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &=&-
abla^2 B_z+rac{\partial}{\partial z}(
abla\cdotec B)\ &-
abla^2 B_z+
abla\cdotec B)=
abla\times(
abla\timesec B)\ & ext{ and } &
abla\cdotec B=0 \end{aligned}$$