Physics $0551 \quad$ Lecture $\# 9$

Title: Madelung constants, Metallic bonding, Defects
The process of calculating the Madelung constant is complicated by the fact that the $1 / \mathrm{p}_{i j}$ lattice sums are conditionally convergent.

One of the simplest methods was introduced by Evjen. (More complicated and general method are discussed elsewhere, see for example Appendix B of Kittel, Introduction to Solid State Physics.) Evjen's method requires an iterative summation of ever larger neutral cells with no accumulation of surface charge. This method constructs the sum so that only dipole and higher moments are used. Thus, rapid convergence is guaranteed.

Example: $\mathrm{FCC} \mathrm{Na}{ }^{+} \mathrm{Cl}^{-}$with its two atoms/unit cell.

$$
\alpha=\mathrm{A}^{1}+\mathrm{A}^{2}+\mathrm{A}^{3}+\ldots .
$$

Cl^{-}in the center Use fraction of atoms within cube

$$
\begin{array}{rcr}
\# & \text { fraction } & p_{i j} \\
& & \\
6 & +1 / 2 & 1 \\
12 & -1 / 4 & \sqrt{2} \\
8 & +1 / 8 & \sqrt{3}
\end{array}
$$

$$
\mathrm{A}^{1}=\frac{6 \cdot 1 / 2}{1}-\frac{12 \cdot 1 / 4}{\sqrt{2}}+\frac{8 \cdot 1 / 8}{\sqrt{3}}=1.456
$$

Outside "wall" (Inner surface)
$\#$ frac. $\mathrm{p}_{i j}$
6
6

$A^{1}+A^{2}=1.752$

$$
A^{1}+A^{2}+A^{3}=1.747
$$

$$
\begin{array}{rll}
\# & \text { frac. } & \mathrm{p}_{i j} \\
& & \\
6 & +1 / 2 & 1 \\
12 & -3 / 4 & \sqrt{2} \\
8 & +7 / 8 & \sqrt{3}
\end{array}
$$

$\mathrm{A}=1.74756$

Note: This method requires care. Example CsCl simple Cubic

It appears to be a proper cell. However $\mathrm{A}^{2 n}$ and $\mathrm{A}^{2 n+1}$ differ by $\pi!$ Notice the accumulation of surface charge.
$\alpha=\mathrm{A}=\mathrm{A}^{1}+\mathrm{A}^{2}+\ldots .=2.0354$
For this a rhombic dodecahedron is necessary.

Metallic Bonding: Due to global sharing of charge.
Since this topic will be covered later, the discussion will be abbreviated here.
For one atom the potential is $V(r)$:

For two atoms:

0 (Vacuum level)

Notice that some electron states are not centered on either atomic position.

For many atoms closely spaced some of the valence electrons occupy states which are delocalized.

or a schematic representation:

We can imagine that the delocalized electrons are just particles in an ever larger "box".
$\mathrm{E}_{\mathrm{box}} \propto n^{2} / L^{2}$ where $L=$ length, $n^{2}=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}$ and n_{x}, n_{y} and n_{z} are integer associated with quantum states. Since the eigenvalues drop rapidly as the box grows larger, it is energetically favorable to have the largest possible box. In principal, this is the origin of metallic bonding.

Schottky Defects in a Monoatomic Crystal

Since we have been discussing "perfect" crystals, it is perhaps useful to briefly discuss some of the simplest deviations from perfection. Hence, the concepts of Schottky and Frenkel defects are introduced.

At temperatures above absolute zero, it is thermodynamically given that all crystals will develop defects. These defects will take the form of vacancies in the atomic sites. The atoms which are displaced can either migrate to lattice surface and occupy lattice sites: These are called Schottky defects. Alternatively they may sit at interstitial locations: These are called Frenkel defects.

Assume that this process occurs at constant pressure. Hence the Helmholtz free energy $\mathrm{F}=\mathrm{U}-\mathrm{TS}$ is minimized.

1. Crystal consists of N atoms and its coefficient of thermal expansion is zero.
2. The energy W_{s} of a Schottky defect is temperature independent. $\mathrm{W}_{s}=($ Work to move the atom $\rightarrow \infty)$ - (energy at the surface)
3. The number of Schottky defects is n_{s} and they are completely independent of one another.

$$
\begin{aligned}
F= & U-T S \\
F= & U_{\text {lattice }}+n_{s} W_{s}-k_{B} T \ln \sigma_{s} \\
& k_{B}=\text { Boltzmann constant } \\
& \sigma_{s}=\text { Number of possible configurations which gives } n_{s} \\
\sigma_{s}= & \binom{N}{n_{s}}=\frac{N!}{\left(N-n_{s}\right)!n_{s}!} \text { is the number of combinations }
\end{aligned}
$$

Recall $\ell \mathrm{n} \mathrm{N}!\approx \mathrm{N} \ell \mathrm{n} \mathrm{N}-\mathrm{N}$ if N is large
Thus
$\ell n \sigma_{s} \approx N \ell n N-\left(N-n_{s}\right) \ln \left(N-n_{s}\right)-n_{s} \ln n_{s}$ $\frac{\partial F}{\partial n_{s}}=0=\mathrm{W}_{s}-k_{B} \mathrm{~T}\left(1+\ell n\left(N-n_{s}\right)-1-\ell n n_{s}\right)$

Assume $n_{s} \ll \mathrm{~N}$

$$
\begin{aligned}
& 0=\mathrm{W}_{s}-k_{B} T \ln \left(\mathrm{~N} / \mathrm{n}_{s}\right) \\
& \ln \left(n_{s} / N\right)=W_{s} / k_{B} T \rightarrow \quad n_{s}=N \exp \left(-W_{s} / k_{B} T\right)
\end{aligned}
$$

An exponential function.

Frenkel imperfections in a monoatomic crystal

$\mathrm{W}_{F}=$ energy required to bring an atom to an interstitial position. The entropy changes consist of two components

1. n_{F} vacancies in a crystal of N atoms can be arranged in σ_{F} ways.
2. The n_{F} atoms from the vacancies can be distributed in σ_{I} ways over the N_{I} interstitial positions.

$$
\Delta S_{F}=k_{B}\left[\ln \frac{N!}{\left(N-n_{F}\right)!n_{F!}}+\ln \frac{N_{I!}}{\left(N_{I}-n_{F}\right)!n_{F!}}\right]
$$

so if $n_{F} \ll N, n_{F} \ll N_{I}$

$$
\begin{aligned}
\frac{\partial F}{\partial n_{F}}= & 0=W_{F}-k_{B} T\left[\ln \left(N / n_{F}\right)+\ln \left(N_{I} / n_{F}\right)\right] \\
& 0=W_{F}+k_{B} T \ell n\left(\frac{n_{F}^{2}}{N N_{I}}\right) \\
\frac{n_{F}^{2}}{N N_{I}}= & \exp \left(-W_{F} / k_{B} T\right) \\
n_{F}= & \left(N N_{I}\right)^{1 / 2} \exp \left(-W_{F} / 2 k_{B} T\right)
\end{aligned}
$$

Very sensitive to N_{I}.

