
Physics 0551 Lecture #9

Title: Madelung constants, Metallic bonding, Defects

The process of calculating the Madelung constant is complicated by the fact that

the 1/pij lattice sums are conditionally convergent.

One of the simplest methods was introduced by Evjen. (More complicated and

general method are discussed elsewhere, see for example Appendix B of Kittel, In-

troduction to Solid State Physics.) Evjen's method requires an iterative summation

of ever larger neutral cells with no accumulation of surface charge. This method

constructs the sum so that only dipole and higher moments are used. Thus, rapid

convergence is guaranteed.

Example: FCC Na+Cl� with its two atoms/unit cell.
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Cl� in the center Use fraction of atoms

within cube

# fraction pij

6 +1=2 1

12 �1=4
p
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8 +1=8
p
3

A1 = 6�1=2
1

- 12�1=4p
2

+ 8�1=8p
3

= 1.456
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The next sum is more di�cult
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Outside \wall"

(Inner surface)

# frac. pij

6 �1=2 2

24 +1=2 2
q
5=4

24 +1=4 2
q
9=4

12 �1=4 2
p
2

8 �1=8 2
p
3

24 �1=2 2
q
3=2

Inside \wall"

(Outer surface)

# frac. pij

6 +1=2 1

12 �3=4
p
2

8 +7=8
p
3

A1 +A2 = 1.752

A1 +A2 +A3 = 1:747

A = 1.74756

Note: This method requires care. Example CsCl simple Cubic

Cs +1/8

Cs +1/8

Cs +1/8

Cs +1/8

Cs +1/8

Cs +1/8

Cs +1/8

Cl

It appears to be a proper cell. However A2n and A2n+1 di�er by �! Notice the

accumulation of surface charge.

� = A = A1 + A2 + .... = 2.0354

For this a rhombic dodecahedron is necessary.
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Metallic Bonding: Due to global sharing of charge.

Since this topic will be covered later, the discussion will be abbreviated here.

For one atom the potential is V(r): (Vacuum level)0

Widely spaced levels

Closely spaced levels

+ +Ze  ion

For two atoms: 0 (Vacuum level)

++

Notice that some electron

states are not centered on

either atomic position.

For many atoms closely spaced some of the valence electrons occupy states which

are delocalized.

Particles (fermions) in a square box

A ‘‘box’’ for delocalized electrons
0

n=1
n=2

2

Fermi
energy

or a schematic representation:

E  ~ 1 / L

+++ ++ + ++

We can imagine that the delocalized electrons are just particles in an ever larger \box".
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Ebox / n2=L2 where L = length, n2 = n2x + n2y + n2z and nx, ny and nz are integer

associated with quantum states. Since the eigenvalues drop rapidly as the box grows

larger, it is energetically favorable to have the largest possible box. In principal, this

is the origin of metallic bonding.

Schottky Defects in a Monoatomic Crystal

Since we have been discussing \perfect" crystals, it is perhaps useful to brie
y dis-

cuss some of the simplest deviations from perfection. Hence, the concepts of Schottky

and Frenkel defects are introduced.

At temperatures above absolute zero, it is thermodynamically given that all crys-

tals will develop defects. These defects will take the form of vacancies in the atomic

sites. The atoms which are displaced can either migrate to lattice surface and oc-

cupy lattice sites: These are called Schottky defects. Alternatively they may sit at

interstitial locations: These are called Frenkel defects.

Assume that this process occurs at constant pressure. Hence the Helmholtz free

energy F = U - TS is minimized.

1. Crystal consists of N atoms and its coe�cient of thermal expansion is zero.

2. The energy Ws of a Schottky defect is temperature independent.

Ws = (Work to move the atom ! 1) - (energy at the surface)

3. The number of Schottky defects is ns and they are completely independent of

one another.

F = U � TS

F = Ulattice + nsWs � kBT `n �s Ulattice < 0

kB = Boltzmann constant

�s = Number of possible con�gurations which givesns

�s =
�

N
ns

�
=

N !

(N � ns)!ns!
is the number of combinations

Recall `n N! � N `n N - N if N is large

Thus

`n �s � N `n N � (N � ns) `n(N � ns)� ns`n ns
@F
@ns

= 0 = Ws � kBT (1 + `n(N � ns)� 1� `n ns)
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Assume ns << N

0 = Ws � kBT `n(N/ns)

`n(ns=N) = Ws=kBT ! ns = N exp(�Ws=kBT )

An exponential function.

Frenkel imperfections in a monoatomic crystal

WF = energy required to bring an atom to an interstitial position. The entropy

changes consist of two components

1. nF vacancies in a crystal of N atoms can be arranged in �F ways.

2. The nF atoms from the vacancies can be distributed in �I ways over the NI

interstitial positions.

�SF = kB[`n
N !

(N � nF )!nF !
+ `n

NI!

(NI � nF )!nF !
]

so if nF << N; nF << NI

@F

@nF
= 0 =WF � kBT [`n(N=nF ) + `n(NI=nF )]

0 =WF + kBT`n

 
n2F
NNI

!

n2F
NNI

= exp(�WF=kBT )

nF = (NNI )
1=2exp(�WF=2kBT )

Very sensitive to NI.
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