As was stated previously, the electron-electron interactions have been completely ignored. Since the core electrons are concentrated near the nucleus, they and the nucleus can be considered a single entity. Hence the \(1/R\) dependence of the nuclei must be modified greatly. For this, there exists no good exact analytic calculations. Hence for the repulsive interaction at short length scales we are reduced to an empirical formulation for this factor.

There are two common representations:

\[
E(R) = \frac{\lambda}{R^n} \quad 8 > n > 14
\]

or

\[
E(R) = \lambda \exp\left(-\frac{R}{\rho}\right) \quad 0.3 \ a_0 > \rho > a_0 \text{ where } a_0 \text{ is the Bohr radius}
\]

VanderWaal Bonding

VdW bonding occurs in all solids. However, this bonding is so weak that except for a limited number of systems it is completely overwhelmed by the other bonding types present. VdW bonding is the primary bonding in closed shell systems with no net charge transfer (i.e., neutral atoms or molecules).

Consider two neutral atoms separated by \(R\). Assume atom 1 has dipole moment \(\vec{p}_1\) at some instant in time.

\[
\vec{E}_1(\vec{R}) = \frac{1}{4\pi\varepsilon_0} \frac{1}{|\vec{R}|^3} (3\vec{p}_1 \cdot \hat{\vec{R}} \hat{\vec{R}} - \vec{p}_1)
\]

\[
\vec{R} = x\hat{x} + y\hat{y} + z\hat{z} \quad \vec{p}_1 = \delta\hat{z}
\]

\[
|\vec{R}| >> |\vec{z}|
\]

\[
\Phi(\vec{R}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{\delta}{|\vec{r}'|} + \frac{-\delta}{|\vec{r}''|} \right)
\]

\[
\vec{r}' = \vec{R} - \vec{z}/2 \quad \vec{r}'' = \vec{R} + \vec{z}/2
\]

\[
|\vec{r}'| = (\vec{r}' \cdot \vec{r}')^{1/2} = (\vec{R}^2 - \vec{z} \cdot \vec{R} + z^2/4)^{1/2}
\]

\[
|\vec{r}''| = (\vec{r}'' \cdot \vec{r}'')^{1/2} = (\vec{R}^2 + \vec{z} \cdot \vec{R} + z^2/4)^{1/2}
\]
by using a Taylor’s series expansion

\[
\frac{1}{|\mathbf{r}'|} \approx \frac{1}{R} \left(1 - \mathbf{\hat{z}} \cdot \frac{\mathbf{R}}{2R^2}\right)
\]

so

\[
\Phi(\mathbf{\bar{R}}) \approx \frac{1}{4\pi \varepsilon_0} \frac{1}{R} \left(\mathbf{\hat{z}} \cdot \frac{\mathbf{R}}{R^2}\right)
\]

\[
\approx \frac{1}{4\pi \varepsilon_0} \mathbf{\bar{p}}_1 \cdot \frac{\mathbf{R}}{R^3}
\]

\[
\mathbf{\tilde{E}}_1(\mathbf{\bar{R}}) = -\nabla \Phi = \frac{1}{4\pi \varepsilon_0} \frac{1}{|\mathbf{\bar{R}}|^3} (3\mathbf{\bar{p}}_1 \cdot \mathbf{\hat{R}} \mathbf{\hat{R}} - \mathbf{\bar{p}}_1)
\]

\[
\mathbf{\bar{R}} = |\mathbf{R}| \mathbf{\hat{R}}
\]

This electric field induces a dipole moment at atom 2.

\[
\mathbf{\bar{p}}_2 = \alpha \mathbf{\tilde{E}}_1(\mathbf{\bar{R}}) \text{ where } \alpha \text{ is the polarizability of atom 2.}
\]

\[
U(\mathbf{\bar{R}}) = -\mathbf{\bar{p}}_2 \cdot \mathbf{\tilde{E}}_1 = -\alpha \mathbf{\tilde{E}} \cdot \mathbf{\tilde{E}}
\]

\[
U(\mathbf{\bar{R}}) = -\alpha \frac{1}{(4\pi \varepsilon_0)^2} \frac{1}{R^6} [9(\mathbf{\bar{p}}_1 \cdot \mathbf{\hat{R}})^2 - 6(\mathbf{\bar{p}}_1 \cdot \mathbf{\hat{R}})^2 + p_1^2]
\]

\[
U(\mathbf{\bar{R}}) = -\alpha \frac{1}{(4\pi \varepsilon_0)^2} \frac{1}{R^6} [3(\mathbf{\bar{p}}_1 \cdot \mathbf{\hat{R}})^2 + p_1^2]
\]

Notice: \(U(\mathbf{R}) < 0 \); this implies an attractive force

\(U(\mathbf{R}) \propto 1/R^6 \); which is very weak

\(U(\mathbf{R}) \propto \text{time-average of } \mathbf{\bar{p}}_1\)

\[
\mathbf{\bar{p}}_1 \cdot \mathbf{\hat{R}} = p_1 \cos \theta
\]

\[
< p_1^2 \cos^2 \theta > = \frac{1}{2} < p_1^2 > \text{ and } < p_1^2 > > 0
\]

so

\[
< U(\mathbf{R}) >= -\frac{5\alpha < p_1^2 >}{2(4\pi \varepsilon_0)^2 R^6}
\]
If \(n = 12 \) (the exponent of the repulsive force) then the interaction energy can be written in this standard form:

\[
U(R) = -4\epsilon \left[\left(\frac{\sigma}{R} \right)^6 - \left(\frac{\sigma}{p_{ij}R} \right)^6 \right]
\]

This form is known as the Lennard-Jones 6-12 potential.

In order to calculate the energy for a VdW solid (the “cohesive” energy), the total energy can be written as:

\[
U_{total}(R) = \frac{1}{2} N_0 \epsilon \left[\sum_j \left(\frac{\sigma}{p_{ij}R} \right)^{12} - \sum_j \left(\frac{\sigma}{p_{ij}R} \right)^6 \right]
\]

By putting the sums in the above form, both \(\sigma \) and \(R \) can be removed from within the summation.

<table>
<thead>
<tr>
<th>FCC</th>
<th>BCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>NN 1 12 8</td>
</tr>
<tr>
<td>6</td>
<td>NNN (\sqrt{2}) ((\frac{1}{\sqrt{2}}))(^{12}) 6</td>
</tr>
<tr>
<td>24</td>
<td>NNNN (\sqrt{3}) ((\frac{1}{\sqrt{3}}))(^{12}) 12</td>
</tr>
<tr>
<td>(\sum p_{ij}^{12}) = 12.13</td>
<td>(\sum p_{ij}^{-6}) = 14.45</td>
</tr>
</tbody>
</table>

The equilibrium structure can be determined;

\[
\frac{dU_{total}}{dR} = 0 \quad \text{and solve for } R_0.
\]

If \(U_{total}(R_0) \) is known, then the energy per atom is known. In general, the cohesive energy is a very difficult quantity to measure. However, a few bulk measurements can give a reasonable estimate of the cohesive energy.

\[
\begin{align*}
v & = V/N, \text{ volume per particle} \\
u & = U/N, \text{ energy per particle} \\
k = \text{isothermal compressibility} = -\frac{1}{V}(\partial V/\partial P)_T \\
dU & = TdS - pdV \\
dU & = -pdV \quad (T=0^\circ \text{K}) \text{ or} \\
dU & \approx -pdV \quad (T>0^\circ \text{K}) \text{ since the change in} \\
\text{entropy for a solid is a slowly varying function.}
\end{align*}
\]

\[
\frac{1}{k} = V \frac{d^2U/dV^2L}{L}
\]

3
\[
\frac{dU}{dV} = \frac{dU}{dr} \frac{dr}{dV}
\]

\[
\frac{d^2U}{dV^2} = \left(\frac{dr}{dV} \right)^2 \frac{d^2U}{dr^2} + \frac{d^2r}{dV^2} \frac{dU}{dr}
\]

At equilibrium, \(\frac{dU}{dr} = 0 \)

Thus

\[
\frac{d^2U(R)}{dV^2} = \left(\frac{dr}{dV} \right)^2 \frac{d^2U}{dr^2}
\]

\(V = N r^3 \) or \(2N r^3 \)

and evaluate at \(r = R_0 \)

So if \(R_0 \) and \(k \) are known, \(\sigma \) and \(\epsilon \) can be determined.

In an ionic compound, the \(1/R^6 \) VdW bonding is completely lost in the background of the large Coulombic forces due to permanently charged species.

\[
U_{\text{Total}}(R) = N \left(z \lambda e^{R/\rho} - \alpha q^2 / R \right)
\]

\(z = \) number of nearest neighbors

\(\alpha = \) Malelung constant

\(\lambda = \) strength of the interaction

\(\rho = \) range of interaction

Ionic bonding

Charge transfer and Coulomb attraction

\(\lambda e^{-r/\rho} \) exchange

Cost energy to transfer however total energy is lowered
In a crystal

\[
U_{ij} = \lambda e^{-r_{ij}/\rho} \pm q^2/r_{ij}
\]
\[
U_i = \sum_j U_{ij}
\]
\[
U_{\text{Total}} = NU_i \quad N \text{ is \# of ion pairs}
\]

The exchange term is short range so we need only consider nearest neighbor. We can rewrite \(r_{ij} = p_{ij}r \) where \(r \) is the equilibrium distance.

\[
U_{\text{Total}} = N \left(z\lambda e^{-r/\rho} + \frac{q^2}{r} \sum_j \pm \frac{1}{p_{ij}} \right) \quad \text{the Madelung constant and}
\]
\[
\sum_j \pm \frac{1}{p_{ij}} \equiv \alpha \quad \text{depends on the crystal structure}
\]

For NaCl (table salt)

\[
\alpha = \left(\frac{6}{1} - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} + \ldots \right) = 1.747
\]

NaCl is FCC with Cl \([0, 0, 0],[1/2, 1/2, 0]\)

Na \([1/2, 1/2, 1/2],[1, 1, 1/2]\), etc.

Note that this sum is *conditionally* convergent.