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Physics 207, Physics 207, Lecture 19, Nov. 8Lecture 19, Nov. 8
�� Agenda: Agenda: Chapter 14, Finish,  Chapter 15, Start 

� Ch. 14: Fluid flow 

�� Ch. 15:  Oscillatory motionCh. 15:  Oscillatory motion

�� Linear oscillatorLinear oscillator

�� Simple pendulumSimple pendulum

�� Physical pendulumPhysical pendulum

�� TorsionalTorsional pendulumpendulum

Assignments:Assignments:

�� Problem Set 7 due Nov. 14, Tuesday 11:59 PMProblem Set 7 due Nov. 14, Tuesday 11:59 PM
�� For Monday, Finish Chapter 15, Start Chapter 16For Monday, Finish Chapter 15, Start Chapter 16
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Fluids in MotionFluids in Motion

� Up to now we have described fluids in 
terms of their static properties:
� Density ρ
� Pressure p

� To describe fluid motion, we need 
something that can describe flow:
� Velocity v

� There are different kinds of fluid flow of varying complexity
� non-steady /  steady
� compressible /  incompressible
� rotational  /  irrotational
� viscous /  ideal
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Types of Fluid FlowTypes of Fluid Flow
� Laminar flow

� Each particle of the fluid 
follows a smooth path

� The paths of the different 
particles never cross each 
other

� The path taken by the 
particles is called a 
streamline

� Turbulent flow
� An irregular flow 

characterized by small 
whirlpool like regions

� Turbulent flow occurs when 
the particles go above some  
critical speed
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� Laminar flow

� Each particle of the fluid 
follows a smooth path

� The paths of the different 
particles never cross each 
other

� The path taken by the 
particles is called a 
streamline

� Turbulent flow
� An irregular flow 

characterized by small 
whirlpool like regions

� Turbulent flow occurs when 
the particles go above some  
critical speed

Physics 207: Lecture 19, Pg 5

Onset of Turbulent Flow

The SeaWifS satellite 
image of a von Karman
vortex around 
Guadalupe Island, 
August 20, 1999
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� Simplest situation: consider ideal 
fluid moving with steady flow -
velocity at each point in the flow is 
constant in time

� In this case, fluid moves on 
streamlines

A
1

A 2

v1

v2

streamline

Ideal FluidsIdeal Fluids

� Fluid dynamics is very complicated in general (turbulence, 
vortices, etc.)

� Consider the simplest case first: the Ideal Fluid
� No “viscosity” - no flow resistance (no internal friction) 
� Incompressible - density constant in space and time
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� Flow obeys continuity equation

Volume flow rate    Q = A·v is constant along flow tube.

Follows from mass conservation if flow is incompressible.

A
1

A2

v1

v2

streamline

A1v1 = A2v2

Ideal FluidsIdeal Fluids
� Streamlines do not meet or cross

� Velocity vector is tangent to 
streamline

� Volume of fluid follows a tube of flow
bounded by streamlines

� Streamline density is proportional to 
velocity
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� Assuming the water moving in the pipe is an ideal fluid, 
relative to its speed in the 1” diameter pipe, how fast is 
the water going in the 1/2” pipe? 

Lecture 19Lecture 19 Exercise 1Exercise 1
ContinuityContinuity

� A housing contractor saves 
some money by reducing the 
size of a pipe from 1” diameter 
to 1/2” diameter at some point in 
your house. 

v1 v1/2

(A) 2 v1 (B) 4 v1 (C) 1/2 v1 (D) 1/4 v1
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� Recall the standard work-energy relation W = ∆K = Kf - Ki

� Apply the principle to a section of flowing fluid with volume ∆V
and mass ∆m = ρ ∆V (here W is work done on fluid)

� Net work by pressure difference over ∆x (∆x1 = v1 ∆t)
� Focus first on W = F ∆x

W = F1 ∆x1 – F2 ∆x2 

= (F1/A1) (A1∆x1) – (F2/A2) (A2 ∆x2)

= P1 ∆V1 – P2 ∆V2

and ∆V1 = ∆V2 = ∆V (incompressible)

W = (P1– P2 ) ∆V

Bernoulli Equation  � P1+ ½ ρ v1
2 + ρ g y1 = constant

y
1

y
2

v
1

v
2

p
1

p
2

∆∆∆∆V

Conservation of Energy for Conservation of Energy for 
Ideal FluidIdeal Fluid
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� Recall the standard work-energy relation W = ∆K = Kf - Ki

W = (P1– P2 ) ∆V and 

W = ½ ∆m v2
2 – ½ ∆m v1

2

= ½ (ρ∆V) v2
2 – ½ (ρ∆V) v1

2

(P1– P2 ) = ½ ρ v2
2 – ½ ρ v1

2

P1+ ½ ρ v1
2 = P2+ ½ ρ v2

2 = constant
(in a horizontal pipe)

Bernoulli Equation  � P1+ ½ ρ v1
2 + ρ g y1 = constant
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Conservation of Energy for Conservation of Energy for 
Ideal FluidIdeal Fluid
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Lecture 19Lecture 19 Exercise 2Exercise 2
Bernoulli’s PrincipleBernoulli’s Principle

� A housing contractor saves 
some money by reducing the 
size of a pipe from 1” diameter 
to 1/2” diameter at some point in 
your house. 

2) What is the pressure in the 1/2” pipe relative to the 
1” pipe? 

(A) smaller (B) same (C) larger

v1 v1/2
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Applications of Fluid DynamicsApplications of Fluid Dynamics

� Streamline flow around a 
moving airplane wing

� Lift is the upward force on 
the wing from the air

� Drag is the resistance
� The lift depends on the 

speed of the airplane, the 
area of the wing, its 
curvature, and the angle 
between the wing and the 
horizontal

higher velocity  
lower pressure

Note: density of flow lines reflects
velocity, not density. We are assuming
an incompressible fluid.

lower velocity
higher pressure
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Back of the envelope calculationBack of the envelope calculation

� Boeing 747-400
� Dimensions: 

�Length: 231 ft 10 inches 
�Wingspan: 211 ft 5 in 
�Height: 63 ft 8 in 

� Weight: 
�Empty: 399, 000 lb 
�Max Takeoff (MTO): 800, 000 lb 
�Payload: 249, 122 lb cargo 

� Performance: 
�Cruising Speed: 583 mph 
�Range: 7,230 nm 

� ρ (v2
2 - v1

2) / 2 = P1 – P2 = ∆P
Let  v2 = 220.0 m/s v2 = 210 m/s
So ∆P = 3 x 103 Pa = 0.03 atm
or 0.5 lbs/in2

http://www.geocities.com/galemcraig/

Let an area of 200 ft x 15 ft 

produce lift or 4.5 x 105 in2

or just  2.2 x 105 lbs � upshot

1. Downward deflection

2. Bernoulli (a small part)

3. Circulation theory
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VenturiVenturi

Bernoulli’s Eq.
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CavitationCavitation

In the vicinity of high velocity fluids, the pressure can gets so low that
the fluid vaporizes.

Venturi result
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Chapter 15Chapter 15
Simple Harmonic Motion (SHM)Simple Harmonic Motion (SHM)

� We know that if we stretch a spring with a mass 
on the end and let it go the mass will oscillate 
back and forth (if there is no friction).

� This oscillation is called 

Simple Harmonic Motion

and if you understand a
sine or cosine is 
straightforward to 
understand.

k
m

k
m

k
m
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SHM DynamicsSHM Dynamics

� At any given instant we know 
that FF = maa must be true.

� But in this case F = -k x

and  ma =

� So: -k x = ma =

k

x

m

FF = -k x
aa

d x

dt

k
m

x
2

2 = − a differential equation for x(t) !

m
d x

dt

2

2

m
d x

dt

2

2

Simple approach, guess a solution and see if it works!
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SHM Solution...SHM Solution...

� Either cos ( ωωωω t ) or sin ( ωωωω t ) can work 
� Below is a drawing of A cos ( ωωωω t )
� where A = amplitude of oscillation

−π−π−π−π ππππ θθθθ2ππππ

T = 2π/ω

A

A
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SHM Solution...SHM Solution...

� What to do if we need  the sine solution?

� Notice A cos( ωt + φ ) = A [cos(ωt) cos(φ) - sin(ωt) sin(φ) 
= [A cos(φ)] cos(ωt) - [A sin(φ)] sin(ωt) 

= A’ cos(ωt) + A” sin(ωt) (sine and cosine)

� Drawing of A cos( ωt + φ )

φ

−π−π−π−π ππππ θθθθ2ππππ
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SHM Solution...SHM Solution...

� Drawing of A cos (ωt - ππππ/2)

A

φ=−π/2

−π−π−π−π ππππ θθθθ2ππππ

= A sin( ωt ) 
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What about Vertical Springs?What about Vertical Springs?

� For a vertical spring, if y is measured from 
the equilibrium position

� Recall: force of the spring is the negative 
derivative of this function:

� This will be just like the horizontal case:

-ky = ma =

j j 

k

m F= -ky

y = 0

U ky= 1
2

2

ky
dy
dU

F −=−=

2

2

dt

yd
m

Which has solution y(t) = A cos( ωt + φ) ω = k
m

where
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Velocity and AccelerationVelocity and Acceleration

k

x

m

0

Position: x(t) = A cos(ωt + φ)
Velocity: v(t) = -ωA sin(ωt + φ)
Acceleration: a(t) = -ω2A cos(ωt + φ)

by taking
derivatives,
since:

a t
dv t

dt
( )

( )=

v t
dx t

dt
( )

( )=
xmax = A
vmax = ωA
amax = ω2A
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Lecture 19, Lecture 19, Exercise 3Exercise 3
Simple Harmonic MotionSimple Harmonic Motion

� A mass oscillates up & down on a spring.  It’s position as a 
function of time is shown below.  At which of the points 
shown does the mass have positive velocity and negative
acceleration ? 

Remember: velocity is slope and acceleration is the curvature

t

y(t)

(a)

(b)

(c)
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ExampleExample
� A mass m = 2 kg on a spring oscillates with amplitude 
A = 10 cm.  At t = 0 its speed is at a maximum, and is v=+2 

m/s

� What is the angular frequency of oscillation ω ?
� What is the spring constant k ?

General relationships  E = K + U = constant,  ω = (k/m)½

So at maximum speed U=0 and ½ mv2 = E = ½ kA2

thus k = mv2/A2 = 2 x (2) 2/(0.1)2 =  800 N/m, ω = 20 rad/sec 

k

x

m
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Initial ConditionsInitial Conditions

k

x

m

0

Use “initial conditions” to determine phase φ !

ππππ 2ππππ

sincos

θθθθ
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Lecture 19, Lecture 19, Example 4Example 4
Initial ConditionsInitial Conditions

� A mass hanging from a vertical spring is lifted a 
distance d above equilibrium and released at t = 0.  
Which of the following describe its velocity and 
acceleration as a function of time (upwards is positive y 
direction):

k

m

y

0

d 

(A)  v(t) = - vmax sin( ωt ) a(t) = -amax cos( ωt ) 

(B)  v(t) = vmax sin( ωt ) a(t) =  amax cos( ωt )

(C)  v(t) =  vmax cos( ωt ) a(t) = -amax cos(ωt )

(both vmax and amax are positive numbers)

t = 0
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Energy of the SpringEnergy of the Spring --Mass SystemMass System

We know enough to discuss the mechanical energy of the 
oscillating mass on a spring.

Kinetic energy is always 
K = ½ mv2

K = ½ m [ -ωA sin( ωt + φ )]2

And the potential energy of a spring is,
U = ½ k x2

U = ½ k [ A cos (ωt + φ) ]2

x(t) =     A cos( ωt + φ )
v(t) = -ωA  sin( ωt + φ )
a(t) = -ω2A cos(ωt + φ)

Remember,
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Energy of the SpringEnergy of the Spring --Mass SystemMass System

Add to get E = K + U = constant.

½ m ( ωA )2 sin2( ωt + φ ) + 1/2 k (A cos( ωt + φ ))2

Remember that

ππππ 2ππππ θθθθ

m

k

m

k == ⇒
2ωω

U~cos2
K~sin2

E = ½  kA2

so, E = ½ k A2 sin2(ωt + φ) +  ½ kA2 cos2(ωt + φ)
= ½ k A2 [ sin2(ωt + φ) +  cos2(ωt + φ)]
= ½ k A2

Active
Figure
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SHM So FarSHM So Far

� The most general solution is x = A cos(ωt + φ)
where A = amplitude 

ω = (angular) frequency
φ = phase constant 

� For SHM without friction,

� The frequency does not depend on the amplitude !
� We will see that this is true of all simple harmonic motion!

� The oscillation occurs around the equilibrium point where the 
force is zero! 

� Energy is a constant, it transfers between potential and 
kinetic.

m

k=ω
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The Simple PendulumThe Simple Pendulum

� A pendulum is made by suspending a mass m at the 
end of a string of length L.  Find the frequency of 
oscillation for small displacements.
Σ Fy = mac = T – mg cos(θ) = m v2/L
Σ Fx = max = -mg sin(θ)
If θ small then  x ≅ L θ and sin(θ) ≅ θ

dx/dt = L  dθ/dt
ax = d2x/dt2 = L d2θ/dt2

so ax =  -g θ = L d2θ / dt2  � L d2θ / dt2 - g θ = 0

and   θ =  θ0 cos(ωt + φ) or θ =  θ0 sin(ωt + φ)
with    ω = (g/L)½

θθθθ L

m

mg

z

y

x

T
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The Rod PendulumThe Rod Pendulum

� A pendulum is made by suspending a thin rod of 
length L and mass M at one end.  Find the frequency 
of  oscillation for small displacements.

Σ τz = I α = -| r x F | = (L/2) mg sin(θ) 
(no torque from T)

-[ mL2/12 + m (L/2)2 ]  α ≅ L/2 mg θ
 -1/3 L d2θ/dt2 = ½ g  θ
 

 The rest is for homework…

θθθθ
L

mg

z

xCM

T
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General Physical PendulumGeneral Physical Pendulum

� Suppose we have some arbitrarily shaped 
solid of mass M hung on a fixed axis, that 
we know where the CM is located and
what the moment of inertia I about the 
axis is.

� The torque about the rotation (z) axis for 
small θ is  (sin θ ≅ θ )                                                              

τ = -MgR sinθ ≅ -MgRθ    ����
θθθθ

Mg

z-axis

R

xCM

d

dt

2

2
2θ ω θ= − ω = MgR

I
where

θ = θ0 cos(ωt + φ)

2

2

dt
d

IMgR
θ=θ−

τ α
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Torsion PendulumTorsion Pendulum

� Consider an object suspended by a wire 
attached at its CM.  The wire defines the 
rotation axis, and the moment of inertia I
about this axis is known.  

� The wire acts like a “rotational spring”.
� When the object is rotated, the wire 

is twisted.  This produces a torque 
that opposes the rotation.

� In analogy with a spring, the torque 
produced is proportional to the 
displacement: τ = - κ θ
where κ is the torsional spring 
constant

� ω = (κ/I)½

I

wire

θ
τ
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Reviewing Simple Harmonic OscillatorsReviewing Simple Harmonic Oscillators

θθθθ

Mg

z-axis

R

xCM

ω = MgR
I

d

dt

2

2
2θ ω θ= −

θ = θ0 cos( ωt + φ)

k

x

m
FF = -kx

aa

I

wire

θ
τ

I
κω =

d x
dt

x
2

2
2= −ω ω = k

m

x(t) = A cos( ωt + φ)

where

� Spring-mass system

� Pendula

� General physical pendulum

� Torsion pendulum
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Energy in SHMEnergy in SHM

� For both the spring and the pendulum, we can 
derive the SHM solution using energy 
conservation. 

� The total energy (K + U) of a 
system undergoing SMH will 
always be constant!

� This is not surprising since 
there are only conservative  
forces present, hence energy is conserved.

-A A0
x

U

U

K
E

Physics 207: Lecture 19, Pg 36

SHM and quadratic potentialsSHM and quadratic potentials

� SHM will occur whenever the potential is quadratic.
� For small oscillations this will be true:
� For example, the potential between

H atoms in an H2 molecule looks
something like this:

-A A0
x

U

U

K
EU

x
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Lecture 19, RecapLecture 19, Recap
�� Agenda: Agenda: Chapter 14, Finish,  Chapter 15, Start 

� Ch. 14: Fluid flow 

�� Ch. 15:  Oscillatory motionCh. 15:  Oscillatory motion

�� Linear spring oscillatorLinear spring oscillator

�� Simple pendulumSimple pendulum

�� Physical pendulumPhysical pendulum

�� TorsionalTorsional pendulumpendulum

Assignments:Assignments:

�� Problem Set 7 due Nov. 14, Tuesday 11:59 PMProblem Set 7 due Nov. 14, Tuesday 11:59 PM
�� For Monday, Finish Chapter 15, Start Chapter 16For Monday, Finish Chapter 15, Start Chapter 16


